精英家教网 > 高中数学 > 题目详情

【题目】袋中有红、白球各一个,每次任取一个,有放回地摸三次,求基本事件的个数n,写出所有基本事件的全集I,并计算下列事件的概率:

1)三次颜色恰有两次同色;

2)三次颜色全相同;

3)三次摸到的红球多于白球.

【答案】123

【解析】

利用列举法,列举出所有的可能事件.

1)根据上述分析,根据古典概型概率计算公式,计算出三次颜色恰有两次同色的概率.

2)根据上述分析,根据古典概型概率计算公式,计算出三次颜色全相同的概率.

3)根据上述分析,根据古典概型概率计算公式,计算出三次摸到的红球多于白球的概率

基本事件个数,全集{(红,红,红),(红,红,白),(红,白,红),(红,白,白),(白,红,红),(白,红,白),(白,白,红),(白,白,白)}.

1)记事件A为“三次颜色恰有两次同色”.

A中含有基本事件个数为

.

2)记事件B为“三次颜色全相同”.

B中含有基本事件个数为

.

3)记事件C为“三次摸到的红球多于白球”.

C中含有基本事件个数为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.

(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;

(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,求n≥m+2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在给出的下列命题中,正确的是(

A.是同一平面上的四个点,若,则点必共线

B.若向量是平面上的两个向量,则平面上的任一向量都可以表示为,且表示方法是唯一的

C.已知平面向量满足为等腰三角形

D.已知平面向量满足,且,则是等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体.

(1)证明:平面

(2)求异面直线所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩合格的概率分别为,若对这三名短跑运动员的100米跑的成绩进行一次检测.

1)求三人都合格的概率;

2)求三人都不合格的概率;

3)求出现几人合格的概率最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆系方程 ( ), 是椭圆的焦点, 是椭圆上一点,且.

(1)求的方程;

(2)为椭圆上任意一点,过且与椭圆相切的直线与椭圆交于 两点,点关于原点的对称点为,求证: 的面积为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学家欧拉在1765年提出,任意三角形的外心、重心、垂心位于同一条直线上,后人称这条直线为欧拉线.已知ABC的顶点A(2,0),B(0,4),若其欧拉线的方程为xy+2=0,则顶点C的坐标为

A. (-4,0) B. (-3,-1) C. (-5,0) D. (-4,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:

(1)求图中的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;

(3)若将频率视为概率,现从全市高二学生中随机查看5名学生的期中考试语文成绩,记成绩优秀(不低于80分)的学生人数为,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象经过点()和(),完成下面问题:

1)求函数的表达式;

2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质;

3)已知函数的图象如图所示,结合你所画出的图象,直接写出的解集.

查看答案和解析>>

同步练习册答案