精英家教网 > 高中数学 > 题目详情
11.设函数$f(x)=\left\{\begin{array}{l}x-1,x≥0\\ 3{x^2}-4,x<0\end{array}\right.$,求f(-1)=(  )
A.-2B.-1C.1D.0

分析 由-1<0,知f(x)=3x2-4,由此能求出f(-1).

解答 解:∵函数$f(x)=\left\{\begin{array}{l}x-1,x≥0\\ 3{x^2}-4,x<0\end{array}\right.$,
∴f(-1)=3×(-1)2-4=-1.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,Sn=2an-3n(n∈N*).
(1)证明数列{an+3}是等比数列,求出数列{an}的通项公式;
(2)设bn=$\frac{n}{3}$an,求数列{bn}的前n项和Tn
(3)数列{an}中是否存在三项,它们可以构成等差数列?若存在,求出一组符合条件的项;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题p:?x∈[0,1],使${({\frac{1}{2}})^{x-1}}-m≥0$恒成立,命题$q:?x∈[{-\frac{π}{6},\frac{π}{3}}]$,使函数$f(x)=\sqrt{3}sinx+cosx-m$有零点,若命题“p∧q”是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$内一点P(1,1),则以P为中点的弦方程为(  )
A.x+2y-3=0B.x+4y-5=0C.4x+y-5=0D.x-2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知中心在原点,离心率为$\frac{1}{2}$的椭圆E的一个焦点为圆:x2+y2-4x+2=0的圆心,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.面积为Q的正方形,绕其一边旋转一周,则所得几何体的侧面积为2πQ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x+1)=x2-5x+4,则f(1)等于(  )
A.0B.1C.4D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.等差数列{an}中,a1,a4025是函数$f(x)=\frac{1}{3}{x^3}-4{x^2}+6x-1$的极值点,则log2a2013等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,△ABC为等边三角形,EA⊥平面ABC,EA∥DC,EA=2DC,F为EB的中点.
(Ⅰ)求证:DF∥平面ABC;
(Ⅱ)求证:平面BDE⊥平面AEB.

查看答案和解析>>

同步练习册答案