【题目】已知函数f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1处取得极值,求a的值;
(Ⅱ)若f(x)在区间(1,2)上单调递增,求a的取值范围;
(Ⅲ)讨论函数g(x)=f'(x)﹣x的零点个数.
【答案】解:(Ⅰ)函数f(x)=x+ +lnx(x>0), f′(x)=1﹣ + = ,
f(x)在x=1处取得极小值,
即有f′(1)=0,解得a=2,
经检验,a=2时,f(x)在x=1处取得极小值.
则有a=2;
(Ⅱ)f′(x)=1﹣ + = ,x>0,
f(x)在区间(1,2)上单调递增,
即为f′(x)≥0在区间(1,2)上恒成立,
即a≤x2+x在区间(1,2)上恒成立,
由x2+x∈(2,6),
则a≤2;
(Ⅲ)g(x)=f′(x)﹣x=1﹣ + ﹣x,x>0,
令g(x)=0,则a=﹣x3+x2+x,
令h(x)=﹣x3+x2+x,x>0,
则h′(x)=﹣3x2+2x+1=﹣(3x+1)(x﹣1),
当x∈(0,1),h′(x)>0,h(x)在(0,1)递增;
当x∈(1,+∞),h′(x)<0,h(x)在(1,+∞)递减.
即有h(x)的最大值为h(1)=1,
则当a>1时,函数g(x)无零点;
当a=1或a≤0时,函数g(x)有一个零点;
当0<a<1时,函数g(x)有两个零点
【解析】(Ⅰ)求出函数的导数,由题意可得f′(1)=0,即可解得a,注意检验;(Ⅱ)由条件可得,f′(x)≥0在区间(1,2)上恒成立,运用参数分离,求得右边函数的范围,即可得到a的范围;(Ⅲ)令g(x)=0,则a=﹣x3+x2+x,令h(x)=﹣x3+x2+x,x>0,求出导数,求得单调区间和最值,结合图象对a讨论,即可判断零点的个数.
【考点精析】通过灵活运用利用导数研究函数的单调性和函数的极值与导数,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数为上的奇函数,求实数a的值;
(2)当时,函数在为减函数,求实数a的取值范围;
(3)是否存在实数(),使得 在闭区间上的最大值为2,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图放置的边长为2的正三角形ABC沿x轴滚动,记滚动过程中顶点A的横、纵坐标分别为和,且是在映射作用下的象,则下列说法中:
① 映射的值域是;
② 映射不是一个函数;
③ 映射是函数,且是偶函数;
④ 映射是函数,且单增区间为,
其中正确说法的序号是___________.
说明:“正三角形ABC沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点B为中心顺时针旋转,当顶点C落在x轴上时,再以顶点C为中心顺时针旋转,如此继续.类似地,正三角形ABC可以沿x轴负方向滚动.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义域为的奇函数,当.
(Ⅰ)求出函数在上的解析式;
(Ⅱ)在答题卷上画出函数的图象,并根据图象写出的单调区间;
(Ⅲ)若关于的方程有三个不同的解,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点分别是椭圆的左右顶点, 为其右焦点, 与的等比中项是,椭圆的离心率为.
(1)求椭圆的方程;
(2)设不过原点的直线与该轨迹交于两点,若直线的斜率依次成等比数列,求的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当|a|≤1,|x|≤1时,关于x的不等式|x2﹣ax﹣a2|≤m恒成立,则实数m的取值范围是( )
A.[ ,+∞)
B.[ ,+∞)
C.[ ,+∞)
D.[ ,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com