精英家教网 > 高中数学 > 题目详情
(2012•成都模拟)己知函数h(x)=
x2-4x+m
x-2
(x∈R,且x>2)的反函数的图象经过点(4,3),将函数y=h(x)的图象向左平移2个单位后得到函数y=f(x)的图象.
(I )求函数f(x)的解析式;
(II)若g(x)=f(x)+
a
x
,g(x)在区间(0,3]上的值不小于8,求实数a的取值范围.
分析:(Ⅰ)先根据互为反函数的两个函数的对称性得出函数h(x)=
x2-4x+m
x-2
(x∈R,且x>2)的图象经过点(3,4),将点的坐标代入函数解析式得出m,由于h(x)=
x2-4x+m
x-2
=(x-2)+
3
x-2
,从而f(x)=h(x+2)=x+
3
x

(II)根据题意得出x+
3+a
x
≥8有a≥-x2+8x-3,令t(x)=-x2+8x-3,则t=-(x-4)2+13,利用t(x)在(0,3)上是增函数.求出其最大值,从而得到实数a的取值范围.
解答:解:(Ⅰ)∵函数h(x)=
x2-4x+m
x-2
(x∈R,且x>2)的反函数的图象经过点(4,3),
∴函数h(x)=
x2-4x+m
x-2
(x∈R,且x>2)的图象经过点(3,4),
32-4×3+m
3-2
=4,⇒m=7,
∴h(x)=
x2-4x+m
x-2
=(x-2)+
3
x-2

∴f(x)=h(x+2)=x+
3
x
. …(3分)
(Ⅱ)∵g(x)=x+
3+a
x

∴由已知有x+
3+a
x
≥8有a≥-x2+8x-3,
令t(x)=-x2+8x-3,则t=-(x-4)2+13,于是t(x)在(0,3)上是增函数.
∴t(x)max=12.
∴a≥12.…(12分)
点评:本小题主要考查函数单调性的应用、反函数、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•成都模拟)设函数f(x)=-
13
x3
+2ax2-3a2x+b(常数a,b满足0<a<1,b∈R).
(1)求函数f(x)的单调区间和极值;
(2)若对任意的x∈[a+1,a+2],不等式|f'(x)|≤a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)定义:若平面点集A中的任一个点(x0,y0),总存在正实数r,使得集合B={(x,y)|
(x-x0)2+(y-y0)2
<r}⊆A
,则称A为一个开集,给出下列集合:
①{(x,y)|x2+y2=1};      
②{(x,y|x+y+2>0)};
③{(x,y)||x+y|≤6};     
{(x,y)|0<x2+(y-
2
)
2
<1}

其中是开集的是
②④
②④
.(请写出所有符合条件的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)向量
OA
=(2,0),
OB
=(2+2cosθ,2
3
+2sinθ)
,则向量
OA
OB
的夹角的范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)已知函数f(x)=
3
sinx,g(x)=cos(π+x)
,直线x=a与f(x),g(x)的图象分别交于M,N两点,则|MN|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)在锐角△ABC中,已知5
.
AC
.
BC
=4|
.
AC
|•|
.
BC
|,设
m
=(sinA,sinB),
n
=(cosB,-cosA)且
m
n
=
1
5

求:(1)sin(A+B)的值;(2)tanA的值.

查看答案和解析>>

同步练习册答案