【题目】解答
(1)已知实数a,b满足|a|<2,|b|<2,证明:2|a+b|<|4+ab|;
(2)已知a>0,求证: ﹣ ≥a+ ﹣2.
【答案】
(1)证明:证法一∵|a|<2,|b|<2,∴a2<4,b2<4,
∴4﹣a2>0,4﹣b2>0.∴(4﹣a2)(4﹣b2)>0,即16﹣4a2﹣4b2+a2b2>0,
∴4a2+4b2<16+a2b2,∴4a2+8ab+4b2<16+8ab+a2b2,
即(2a+2b)2<(4+ab)2,
∴2|a+b|<|4+ab|.
证法二:要证2|a+b|<|4+ab|,
只需证4a2+4b2+8ab<16+a2b2+8ab,
只需证4a2+4b2<16+a2b2,
只需证16+a2b2﹣4a2﹣4b2>0,即(4﹣a2)(4﹣b2)>0.
∵|a|<2,|b|<2,∴a2<4,b2<4,
∴(4﹣a2)(4﹣b2)>0成立.
∴要证明的不等式成立
(2)证明:要证 ﹣ ≥a+ ﹣2,
只需证 +2≥a+ + ,
只需证a2+ +4+4 ≥a2+ +2+2 +2,
即证2 ≥ ,
只需证4 ≥2 ,
即证a2+ ≥2,此式显然成立.∴原不等式成立.
【解析】(1)法一:根据综合法证明即可;法二:根据分析法证明即可;(2)根据分析法证明即可.
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.
科目:高中数学 来源: 题型:
【题目】艾萨克牛顿(1643年1月4日﹣1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数f(x)零点时给出一个数列{xn}:满足 ,我们把该数列称为牛顿数列.如果函数f(x)=ax2+bx+c(a>0)有两个零点1,2,数列{xn}为牛顿数列,设 ,已知a1=2,xn>2,则{an}的通项公式an= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的图象在点(x0 , f(x0))处的切线方程l:y=g(x),若函数f(x)满足x∈I(其中I为函数f(x)的定义域),当x≠x0时,[f(x)﹣g(x)](x﹣x0)>0恒成立,则称x0为函数f(x)的“穿越点”.已知函数f(x)=lnx﹣ x2﹣ 在(0,e]上存在一个“穿越点”,则a的取值范围为( )
A.[ ,+∞)??
B.(﹣1, ]??
C.[﹣ ,1)??
D.(﹣∞,﹣ ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知D为圆O:x2+y2=8上的动点,过点D向x轴作垂线DN,垂足为N,T在线段DN上且满足 .
(1)求动点T的轨迹方程;
(2)若M是直线l:x=﹣4上的任意一点,以OM为直径的圆K与圆O相交于P,Q两点,求证:直线PQ必过定点E,并求出点E的坐标;
(3)若(2)中直线PQ与动点T的轨迹交于G,H两点,且 ,求此时弦PQ的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=1,E,F分别是CC1 , BC的中点,AE⊥A1B1 , D为棱A1B1上的点.
(1)证明:AB⊥AC;
(2)证明:DF⊥AE;
(3)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为 ?若存在,说明点D的位置,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 且Sn=﹣1+2an(Ⅰ)求{an}的通项公式;
(Ⅱ)若bn=log2an+1 , 且数列{bn}的前n项和为Tn , 求 +…+ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知不恒为零的函数f(x)在定义域[0,1]上的图象连续不间断,满足条件f(0)=f(1)=0,且对任意x1 , x2∈[0,1]都有|f(x1)﹣f(x2)|≤ |x1﹣x2|,则对下列四个结论: ①若f(1﹣x)=f(x)且0≤x≤ 时,f(x)= x(x﹣ ),则当 <x≤1时,f(x)= (1﹣x)( ﹣x);
②若对x∈[0,1]都有f(1﹣x)=﹣f(x),则y=f(x)至少有3个零点;
③对x∈[0,1],|f(x)|≤ 恒成立;
④对x1 , x2∈[0,1],|f(x1)﹣f(x2)|≤ 恒成立.
其中正确的结论个数有( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C1的参数方程为 ,曲线C2的极坐标方程为 .
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)设P为曲线C1上一点,Q曲线C2上一点,求|PQ|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛掷三枚不同的具有正、反两面的金属制品A1、A2、A3 , 假定A1正面向上的概率为 ,A2正面向上的概率为 ,A3正面向上的概率为t(0<t<1),把这三枚金属制品各抛掷一次,设ξ表示正面向上的枚数.
(1)求ξ的分布列及数学期望Eξ(用t表示);
(2)令an=(2n﹣1)cos( Eξ)(n∈N+),求数列{an}的前n项和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com