精英家教网 > 高中数学 > 题目详情
(2013•惠州二模)正方体ABCD_A1B1C1D1,AA1=2,E为棱CC1的中点.
(Ⅰ)求证:B1D1⊥AE;  
(Ⅱ)求证:AC∥平面B1DE;
(Ⅲ)求三棱锥A-BDE的体积.
分析:(I)先证BD⊥面ACE,再利用线面垂直的性质,即可证得结论;
(II)连接AF、CF、EF,由E、F是CC1、BB1的中点,易得AF∥ED,CF∥B1E,从而可证平面ACF∥面B1DE.进而由面面平行的性质可得AC∥平面B1DE;
(Ⅲ)三棱锥A-BDE的体积,即为三棱锥E-ABD的体积,根据正方体棱长为2,E为棱CC1的中点,代入棱锥体积公式,可得答案.
解答:证明:(1)连接BD,则BD∥B1D1,(1分)
∵ABCD是正方形,∴AC⊥BD.
∵CE⊥面ABCD,∴CE⊥BD.
又AC∩CE=C,∴BD⊥面ACE.(4分)
∵AE?面ACE,∴BD⊥AE,
∴B1D1⊥AE.(5分)
(2)连接AF、CF、EF.
∵E、F是CC1、BB1的中点,∴CE平行且等于B1F,
∴四边形B1FCE是平行四边形,
∴CF∥B1E,CF?平面B1DE,B1E?平面B1DE(7分)
∴CF∥平面B1DE
∵E,F是CC1、BB1的中点,∴EF平行且等于BC
又BC平行且等于AD,∴EF平行且等于AD.
∴四边形ADEF是平行四边形,∴AF∥ED,
∵AF?平面B1DE,ED?平面B1DE(7分)
∴AF∥平面B1DE
∵AF∩CF=F,
∴平面ACF∥平面B1DE.(9分)
又∵AC?平面ACF
∴AC∥平面B1DE;
解:(Ⅲ)三棱锥A-BDE的体积,即为三棱锥E-ABD的体积
∴V=
1
3
1
2
•AD•AB•EC=
1
3
1
2
•2•2•1=
2
3
点评:本题主要考查线面垂直和面面平行,解题的关键是正确运用线面垂直和面面平行的判定定理,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•惠州二模)已知圆C1:x2+y2=2和圆C2,直线l与C1切于点M(1,1),圆C2的圆心在射线2x-y=0(x≥0)上,且C2经过坐标原点,如C2被l截得弦长为4
3

(1)求直线l的方程;
(2)求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州二模)有朋自远方来,已知他乘火车、轮船、汽车、飞机来的概率分别是0.3、0.2、0.1、0.4.
(Ⅰ)求他乘火车或飞机来的概率;
(Ⅱ)求他不乘轮船来的概率;
(Ⅲ)如果他来的概率为0.4,请问他有可能是乘何种交通工具来的?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州二模)在一次射击训练中,一小组的成绩如下表:
环数 7 8 9
人数 2 3
已知该小组的平均成绩为8.1环,那么成绩为8环的人数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州二模)下列函数为奇函数的是(  )

查看答案和解析>>

同步练习册答案