精英家教网 > 高中数学 > 题目详情

【题目】随着新高考改革的不断深入,高中学生生涯规划越来越受到社会的关注.一些高中已经开始尝试开设学生生涯规划选修课程,并取得了一定的成果.如表为某高中为了调查学生成绩与选修生涯规划课程的关系,随机抽取50名学生的统计数据.

成绩优秀

成绩不够优秀

总计

选修生涯规划课

15

10

25

不选修生涯规划课

6

19

25

总计

21

29

50

1)根据列联表运用独立性检验的思想方法能否有99%的把握认为“学生的成绩是否优秀与选修生涯规划课有关”,并说明理由;

2)现用分层抽样的方法在选修生涯规划课的成绩优秀和成绩不够优秀的学生中随机抽取5名学生作为代表,从5名学生代表中再任选2名学生继续调查,求这2名学生成绩至少有1人优秀的概率.

参考附表:

PK2k

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

参考公式,其中na+b+c+d.

【答案】1)有99%的把握认为“学生的成绩是否优秀与选修生涯规划课有关”,详见解析(2

【解析】

1)由列联表中的数据结合公式求得得K2的观测值k,结合临界值表得结论;

2)利用枚举法写出从5名学生中任选2名学生的全部基本事件,再求出所选2人至少有1人成绩优秀的事件数,由古典概型概率公式求解.

1)由已知表格中的数据,可得K2的观测值k6.6506.635.

所以有99%的把握认为学生的成绩是否优秀与选修生涯规划课有关

2)由题意得,在成绩优秀的学生中抽取153(人),分别记为ABC

在成绩不够优秀的学生中抽取532(人),分别记为ab.

则从5名学生中任选2名学生的全部基本事件为:ABACAaAbBCBaBbCaCbab,共有10种,

其中所选2人至少有1人成绩优秀的事件为:ABACAaAbBCBaBbCaCb

共有9.

∴这2名学生中至少有1人优秀的概率为P.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C所对边的边长,且C=,a+b=λc(其中λ>1).

(1)若λ=时,证明:△ABC为直角三角形;

(2)若·λ2,且c=3,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)讨论的单调性;

2)若上仅有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx

1)讨论函数fx)的单调性;

2)证明:a1时,fx+gx)﹣(1lnxe

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】众所周知的太极图,其形状如对称的阴阳两鱼互抱在一起,也被称为阴阳鱼太极图.如图是放在平面直角坐标系中的太极图.整个图形是一个圆形.其中黑色阴影区域在y轴右侧部分的边界为一个半圆,给出以下命题:

①在太极图中随机取一点,此点取自黑色阴影部分的概率是

②当时,直线yax+2a与白色部分有公共点;

③黑色阴影部分(包括黑白交界处)中一点(xy),则x+y的最大值为2

④设点P(﹣2b),点Q在此太极图上,使得∠OPQ45°b的范围是[22]

其中所有正确结论的序号是(

A.①④B.①③C.②④D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一项针对我国《义务教育数学课程标准》的研究,表1为各个学段每个内容主题所包含的条目数.下图是将下表的条目数转化为百分比,按各学段绘制的等高条形图.由图表分析得出以下四个结论,其中错误的是( )

学段

内容主题

第一学段

13年级)

第二学段

46年级)

第三学段

79年级)

合计

数与代数

21

28

49

98

图形与几何

18

25

87

130

统计与概率

3

8

11

22

综合与实践

3

4

3

10

合计

45

65

150

260

A.除了“综合与实践”外,其他三个内容领域的条目数都随着学段的升高而增加,尤其“图形与几何”在第三学段急剧增加,约是第二学段的3.5

B.在所有内容领域中,“图形与几何”内容最多,占.“综合与实践”内容最少,约占

C.第一、二学段“数与代数”内容最多,第三学段“图形与几何”内容最多

D.“数与代数”内容条目数虽然随着学段的增长而增长,而其百分比却一直在减少.“图形与几何”内容条目数,百分比都随学段的增长而增长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数a为常数)和k为常数),有以下命题:①当时,函数没有零点;②当时,若恰有3个不同的零点,则;③对任意的,总存在实数,使得4个不同的零点,且成等比数列.其中的真命题是_____(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周髀算经》中给出了勾股定理的绝妙证明.如图是赵爽弦图及注文.弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱色及黄色,其面积称为朱实、黄实.×+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+2=2.若图中勾股形的勾股比为,向弦图内随机抛掷100颗图钉(大小忽略不计),则落在黄色图形内的图钉颗数大约为( )(参考数据:

A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)函数在点处的切线的斜率为2,求的值;

2)讨论函数的单调性;

3)若函数有两个不同极值点为,证明:.

查看答案和解析>>

同步练习册答案