【题目】设数列的前n项和为,若对任意正整数n,总存在正整数m,使得,则称是“H数列”;
(1)若数列的前n项和(),判断数列是否是“H数列”?若是,给出证明;若不是,说明理由;
(2)设数列是常数列,证明:为“H数列”的充要条件是;
(3)设是等差数列,其首项,公差,若是“H数列”,求d的值;
科目:高中数学 来源: 题型:
【题目】对于双曲线:(),若点满足,则称在的外部;若点满足,则称在的内部.
(1)若直线上点都在的外部,求的取值范围;
(2)若过点,圆()在内部及上的点构成的圆弧长等于该圆周长的一半,求、满足的关系式及的取值范围;
(3)若曲线()上的点都在的外部,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函数f(x)在R上单调递增,求实数a的取值范围;
(3)是否存在实数a,使不等式f(x)≥2x-3对任意x∈R恒成立?若存在,求出a的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知表示不小于的最小整数,例如.
(1)设,,若,求实数的取值范围;
(2)设,在区间上的值域为,集合中元素的个数为,求证:;
(3)设(),,若对于,都有,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合函数,函数的值域为,
(1)若不等式的解集为,求的值;
(2)在(1)的条件下,若恒成立,求的取值范围;
(3)若关于的不等式的解集,求实数的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数由方程到确定,对于函数给出下列命题:
①对任意,都有恒成立:
②,使得且同时成立;
③对于任意恒成立;
④对任意,,
都有恒成立.其中正确的命题共有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两人同时参加一次数学测试,共有20道选择题,每题均有4个选项,答对得3分,答错或不答得0分,甲和乙都解答了所有的试题,经比较,他们只有2道题的选项不同,如果甲最终的得分为54分,那么乙的所有可能的得分值组成的集合为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com