精英家教网 > 高中数学 > 题目详情
20.a、b、c是两两不等的实数,则经过P(b,b+c)、C(a,c+a)两点的直线的倾斜角为$\frac{π}{4}$.

分析 由直线经过P(b,b+c)、C(a,c+a)两点,能求出直线AB的斜率,从而能求出直线AB的倾斜角.

解答 解:∵直线经过P(b,b+c)、C(a,c+a)两点,
∴直线AB的斜率k=$\frac{c+a-(b+c)}{a-b}$=1,
∴直线AB的倾斜角α=$\frac{π}{4}$;
故答案为:$\frac{π}{4}$.

点评 本题考查直线的倾斜角的求法,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图直三棱柱ABC-A′B′C′的侧棱长为3,AB⊥BC,且AB=BC=3,点E,F分别是棱AB,BC上的动点,且AE=BF.
(1)求证:无论E在何处,总有CB′⊥C′E;
(2)当三棱锥B-EB′F的体积取得最大值时,求AE的长度.
(3)在(2)的条件下,求异面直线A′F与AC所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=$\frac{1}{4}$
(1)求△ABC的周长;
(2)求sin(A-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某班有学生50人,现用系统抽样的方法,抽取一个容量为4的样本,已知编号分别为6,30,42的同学都在样本中,那么样本中还有一位同学的编号应该是18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若n∈N+,且n≥2,求证:$\frac{1}{2}$-$\frac{1}{n+1}$<$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{{\begin{array}{l}{(1-3a)x+10a,x≤7}\\{{a^{x-7}},x>7}\end{array}}$是定义域(-∞,+∞)上的单调递减函数,则实数a的取值范围是(  )
A.$(\frac{1}{3},\frac{1}{2})$B.($\frac{1}{3}$,$\frac{6}{11}$]C.$[\frac{1}{2},\frac{2}{3})$D.$(\frac{1}{2},\frac{6}{11}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$-($\frac{49}{9}$)0.5+(0.2)-2×$\frac{2}{25}$-(0.081)0
(2)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{245}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列四组函数中,表示同一函数的是(  )
A.$f(x)=|x|,g(x)=\sqrt{x^2}$B.f(x)=lgx2,g(x)=2lgx
C.$f(x)=\frac{{{x^2}-1}}{x-1},g(x)=x-1$D.$f(x)=\sqrt{x+1}•\sqrt{x-1},g(x)=\sqrt{{x^2}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直三棱柱A1B1C1-ABC中,AC⊥BC,D、E分别为AB、AC中点.
(1)求证:DE∥面BCC1B1
(2)若CB=1,$AC=\sqrt{3}$,$A{A_{\;\;1}}=\sqrt{3}$.求异面直线A1E和CD所成角的大小.

查看答案和解析>>

同步练习册答案