精英家教网 > 高中数学 > 题目详情
12.任意a∈R,曲线y=ex(x2+ax+1-2a)在点P(0,1-2a)处的切线l与圆C:x2+2x+y2-12=0的位置关系是(  )
A.相交B.相切C.相离D.以上均有可能

分析 求出曲线y=ex(x2+ax+1-2a)在点P(0,1-2a)处的切线l恒过定点(-2,-1),代入x2+2x+y2-12,可得4-4+1-12=-11<0,即定点在圆内,即可得出结论.

解答 解:∵y=ex(x2+ax+1-2a),
∴y′=ex(x2+ax+2x+1-a),
x=0时,y′=1-a,
∴曲线y=ex(x2+ax+1-2a)在点P(0,1-2a)处的切线y-1+2a=(1-a)x,
恒过定点(-2,-1),代入x2+2x+y2-12,可得4-4+1-12=-11<0,即定点在圆内,
∴切线l与圆C:x2+2x+y2-12=0的位置关系是相交.
故选:A.

点评 本题考查导数的几何运用,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.函数f(x)=ax-1+4(其中a>0且a≠1)的图象恒过定点P,则P点坐标是(1,5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)的定义域为D,若存在区间[m,n]⊆D使得f(x):
(Ⅰ)f(x)在[m,n]上是单调函数;
(Ⅱ)f(x)在[m,n]上的值域是[2m,2n],
则称区间[m,n]为函数f(x)的“倍值区间”.
下列函数中存在“倍值区间”的有①②④(填上所有你认为正确的序号)
①f(x)=x2; ②$f(x)=\frac{1}{x}$;③$f(x)=x+\frac{1}{x}$;   ④$f(x)=\frac{3x}{{{x^2}+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设集合A={1,3,5,7},B={2,3,4},则A∩B={3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设等比数列{an}的公比为q,前n项和为Sn,则“|q|=1”是“S6=3S2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.△ABC中的内角A,B,C的对边分别为a,b,c,若$\sqrt{5}$b=4c,B=2C
(Ⅰ)求cosB;
(Ⅱ)若c=5,点D为边BC上一点,且BD=6,求△ADC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=$\frac{{x}^{2}ln|x|}{|x|}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,已知圆O:x2+y2=b2经过椭圆$E:\frac{x^2}{4}+\frac{y^2}{b^2}=1$(0<b<2)的焦点.
(1)求椭圆E的标准方程;
(2)设直线l:y=kx+m交椭圆E于P,Q两点,T为弦PQ的中点,M(-1,0),N(1,0),记直线TM,TN的斜率分别为k1,k2,当2m2-2k2=1时,求k1•k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果a+b=1,那么ab的最大值是(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

同步练习册答案