精英家教网 > 高中数学 > 题目详情
已知定义域为(-1,1)的函数f(x)=
x
x2+1

(Ⅰ)判断函数f(x)奇偶性并加以证明;
(Ⅱ)判断函数f(x)的单调性并用定义加以证明;
(Ⅲ)解关于x的不等式f(x-1)+f(x)<0.
(I)f(x)为定义域上的奇函数,证明如下:
定义域为(-1,1),关于原点对称,
又f(-x)=
-x
(-x)2+1
=
-x
x2+1
=-f(x),
∴f(x)为奇函数;
(II)f(x)在(-1,1)上单调递增,证明如下:
任取x1,x2∈(-1,1),且x1<x2
则f(x1)-f(x2)=
x1
x12+1
-
x2
x22+1

=
x1(x22+1)-x2(x12+1)
(x12+1)(x22+1)

=
(x2-x1)(x1x2-1)
(x12+1)(x22+1)

∵x1,x2∈(-1,1),且x1<x2
∴x2-x1>0,x1x2-1<0,x12+1>0x22+1>0
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在(-1,1)上单调递增;
(III)由(Ⅰ)知,f(x)为奇函数,
∴f(x-1)+f(x)<0等价于f(x-1)<-f(x)=f(-x),
由(Ⅱ)知f(x)单调递增,
x-1<-x
-1<x-1<1
-1<x<1
,解得0<x<
1
2

∴不等式的解集为:(0,
1
2
)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定义在上函数为奇函数.
(1)求的值;
(2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)是定义在R上的偶函数,对任意的x∈R都有f(x+6)=f(x)+2f(3),f(-1)=2,则f(2011)=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=
ax+1
x+2
在(-2,+∞)上为增函数,则a的取值范围是(  )
A.0<a<
1
2
B.a<-1或a>
1
2
C.a>
1
2
D.a>-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)满足f(
1
x
)=x+2

(Ⅰ)求f(x)的解析式及其定义域;
(Ⅱ)写出f(x)的单调区间并证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,既是奇函数,又在R上是增函数的是(  )
A.y=x
2
3
B.y=-x|x|C.y=2x+2-xD.y=2x-2-x

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=
x2-3tx+18,x<3
(t-4)
x-3
,x≥3
在R递减,则实数t的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=x2+1,g(x)=f[f(x)],设G(x)=g(x)-λf(x),且G(x)在(-∞,-1]上为减函数,在(-1,0)上为增函数,则实数λ=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)是R上的奇函数,当x≤0时,f(x)=2x2-x,则f(1)=______.

查看答案和解析>>

同步练习册答案