【题目】如图1,在等腰梯形中,,,,为的中点.现分别沿,将和折起,点折至点,点折至点,使得平面平面,平面平面,连接,如图2.
(Ⅰ)若、分别为、的中点,求证:平面平面;
(Ⅱ)求多面体的体积.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,且曲线的极坐标方程为.
(1)写出直线的普通方程与曲线的直角坐标方程;
(2)设直线上的定点在曲线外且其到上的点的最短距离为,试求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代名著《张丘建算经》中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭;令上方六尺:问亭方几何?”大致意思是:有一个四棱锥下底边长为二丈,高三丈;现从上面截取一段,使之成为正四棱台状方亭,且四棱台的上底边长为六尺,则该正四棱台的高为________尺,体积是_______立方尺(注:1丈=10尺).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某手机生产企业为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到单价(单位:千元)与销量(单位:百件)的关系如下表所示:
单价(千元) | 1 | 1.5 | 2 | 2.5 | 3 |
销量(百件) | 10 | 8 | 7 | 6 |
已知.
(Ⅰ)若变量,具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程;
(Ⅱ)用(Ⅰ)中所求的线性回归方程得到与对应的产品销量的估计值,当销售数据对应的残差满足时,则称为一个“好数据”,现从5个销售数据中任取3个,求其中“好数据”的个数的分布列和数学期望.
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知离心率为的椭圆经过抛物线的焦点,斜率为1的直线经过且与椭圆交于两点.
(1)求面积;
(2)动直线与椭圆有且仅有一个交点,且与直线分别交于两点,为椭圆的右焦点,证明为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(其中为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)若,求直线与曲线的交点的直角坐标;
(2)若点在曲线上,且到直线距离的最大值为,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在市中心有一矩形空地.市政府欲将它改造成绿化景观带,具体方案如下:在边上分别取点M,N,在三角形内建造假山,在以为直径的半圆内建造喷泉,其余区域栽种各种观赏类植物.
(1)若假山区域面积为,求喷泉区域面积的最小值;
(2)若,求假山区域面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com