精英家教网 > 高中数学 > 题目详情
(2012•北京模拟)已知直线l1:x+2y+1=0与直线l2:4x+ay-2=0垂直,那么l1与l2的交点坐标是
1
5
,-
3
5
1
5
,-
3
5
分析:由两条直线垂直,建立关于a的方程并解之,得a=-2,直线l2方程为4x-2y-2=0.再将直线l1的方程和l2的方程联解,即可得到所求交点的坐标.
解答:解:∵直线l1:x+2y+1=0与直线l2:4x+ay-2=0垂直
∴1×4+2a=0,解之得a=-2,直线l2方程为4x-2y-2=0
x+2y+1=0
4x-2y-2=0
,联解得x=
1
5
,y=-
3
5
,得交点坐标为(
1
5
,-
3
5

故答案为:(
1
5
,-
3
5
点评:本题给出互相垂直的两条直线,求它们的交点坐标,着重考查了两条直线平行或垂直的判定、求两条相交直线的交点坐标等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•北京模拟)已知a、b、c、d是公比为2的等比数列,则
2a+b
2c+d
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)函数y=
log
2
3
(3x-2)
的定义域为
2
3
,1]
2
3
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)如图,在四棱锥P-ABCD中,PA⊥平面AC,且四边形ABCD是矩形,则该四棱锥的四个侧面中是直角三角形的有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)在数列{an}中,a1=
3
an+1=
1+
a
2
n
-1
an
(n∈N*)
.数列{bn}满足0<bn
π
2
,且 an=tanbn(n∈N*).
(1)求b1,b2的值;
(2)求数列{bn}的通项公式;
(3)设数列{bn}的前n项和为Sn.若对于任意的n∈N*,不等式Sn≥(-1)nλbn恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)甲、乙、丙、丁四个人进行传球练习,每次球从一个人的手中传入其余三个人中的任意一个人的手中.如果由甲开始作第1次传球,经过n次传球后,球仍在甲手中的所有不同的传球种数共有an种.
(如,第一次传球模型分析得a1=0.)
(1)求 a2,a3的值;
(2)写出 an+1与 an的关系式(不必证明),并求 an=f(n)的解析式;
(3)求 
anan+1
的最大值.

查看答案和解析>>

同步练习册答案