精英家教网 > 高中数学 > 题目详情
,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且成等差数列。
(1)求的周长
(2)求的长                       
(3)若直线的斜率为1,求b的值。
(1)4
(2)4/3
(3)
第一问利用椭圆的定义可知三角形的周长为4a
第二问中,利用已知的等差数列,以及第一问周长,可以解得AB的长
第三问中,由于直线的斜率为1,设出直线与椭圆方程联立方程组,结合韦达定理以及弦长公式得到b的值。
(1)由椭圆定义知
已知a=1∴的周长是4
(2)由已知 成等差数列
  ,

故3|AB |=4,解得 |AB|=4/3
(3)L的方程式为y=x+c,其中 
,则A,B 两点坐标满足方程组
 ,
化简得
 
因为直线AB的斜率为1,所以 
即   .
 
解得 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(10分)抛物线上有两点(0为坐标原点)
(1)求证:  (2)若,求AB所在直线方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,以O为极点,X轴的正半轴为极轴,取与直角坐标系相同的长度单位建立极坐标系.曲线C1的参数方程为:为参数);射线C2的极坐标方程为:,且射线C2与曲线C1的交点的横坐标为
(I )求曲线C1的普通方程;
(II)设A、B为曲线C1与y轴的两个交点,M为曲线C1上不同于A、B的任意一点,若直线AM与MB分别与x轴交于P,Q两点,求证|OP|.|OQ|为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知曲线的极坐标方程是. 以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是:为参数),则直线与曲线相交所成的弦的弦长为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,且过点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)垂直于坐标轴的直线与椭圆相交于两点,若以为直径的圆经过坐标原点.证明:圆的半径为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆(常数)的左右焦点分别为是直线上的两个动点,
(1)若,求的值;
(2)求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

两定点的坐标分别为,动点满足条件,动点的轨迹方程是                 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设点F(0,),动圆P经过点F且和直线y=相切,记动圆的圆心P的轨迹为曲线W.
⑴求曲线W的方程;⑵过点F作相互垂直的直线,分别交曲线W于A,B和C,D.①求四边形ABCD面积的最小值;②分别在A,B两点作曲线W的切线,这两条切线的交点记为Q,求证:QA⊥QB,且点Q在某一定直线上。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,过坐标原点且斜率为的直线
椭圆相交于
(Ⅰ)求椭圆的方程;
(Ⅱ)若动圆与椭圆和直线都没有公共点,试求的取值范围.

查看答案和解析>>

同步练习册答案