精英家教网 > 高中数学 > 题目详情

【题目】写算,是一种格子乘法,也是笔算乘法的一种,用以区别筹算与珠算,它由明代数学家吴敬在其撰写的《九章算法比类大全》一书中提出,是从天元式的乘法演变而来.例如计算,将被乘数89计入上行,乘数65计入右行.然后以乘数65的每位数字乘被乘数89的每位数字,将结果计入相应的格子中,最后从右下方开始按斜行加起来,满十向上斜行进一,如图,即得5785.类比此法画出的表格,若从表内(表周边数据不算在内)任取一数,则恰取到奇数的概率是(

A.B.C.D.

【答案】A

【解析】

根据题意画出的表格,由古典概型概率公式即可求解.

根据题意,结合范例画出的表格,从表格中可以看出,共有18个数,

其中奇数有5个,所以从表内任取一数,恰取到奇数的概率为

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)若,求函数的单调减区间;

2)若数的极值点是,求bc的值;

3)若,曲线处的切线斜率为,求证:的极大值大于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的极值;

2)是否存在实数,使得不等式上恒成立?若存在,求出的最小值:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果两个方程的曲线经过若干次平移或对称变换后能够完全重合,则称这两个方程为“互为镜像方程对”,给出下列四对方程:

互为镜像方程对的是(

A.①②③B.①③④C.②③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,右顶点为.为坐标原点)的三个内角大小成等差数列.

1)求椭圆的离心率

2)直线与椭圆交于两点,设直线,若面积的最大值为,且该椭圆短轴长小于焦距,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱中,分别是 的中点,为棱上的点.

(1)证明:

(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点轴负半轴上,以为边做菱形,且菱形对角线的交点在轴上,设点的轨迹为曲线.

1)求曲线的方程;

2)过点,其中,作曲线的切线,设切点为,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角ABC所对应的分别为abc,且(a+b)(sinAsinB)=(cbsinC,若a2,则△ABC的面积的最大值是(

A.1B.C.2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分,1小问7分,2小问5分

设函数

1处取得极值,确定的值,并求此时曲线在点处的切线方程;

2上为减函数,求的取值范围。

查看答案和解析>>

同步练习册答案