精英家教网 > 高中数学 > 题目详情

【题目】在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球4个,白球3个,蓝球3个。

(Ⅰ)现从中任取出一球确定颜色后放回盒子里,再取下一个球,重复以上操作,最多取3次,过程中如果取出蓝色球则不再取球,求:

①最多取两次就结束的概率;

②整个过程中恰好取到2个白球的概率;

(Ⅱ)若改为从中任取出一球确定颜色后不放回盒子里,再取下一个球。重复以上操作,最多取3次,过程中如果取出蓝色球则不再取球,则设取球的次数为随机变量的分布列和数学期望,

【答案】(),②()答案见解析.

【解析】

()①由题意分别求得取1次结束和取2次结束的概率即可确定满足题意的概率;

②首先列出所有取到2个白球的事件,然后利用概率公式可得相应的概率值;

()由题意可知的取值为 1,2,3 ,求得相应的概率值即可确定分布列,进一步计算数学期望即可.

()①设取球的次数为

故最多取两次就结束的概率.

②由题意可知,可以如下取球:红白白,白红白,白白红,白白蓝,

所以恰好取到 2 个白球的概率:.

()随机变量的取值为 1,2,3

随机变量的分布列为:

1

2

3

的数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断函数的单调性;

2)若,证明:关于的不等式上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大学就业指导中心对该校毕业生就业情况进行跟踪调查,发现不同的学历对就业专业是否为毕业所学专业有影响,就业指导中心从届的毕业生中,抽取了本科和研究生毕业生各名,得到下表中的数据.

就业专业

毕业学历

就业为所学专业

就业非所学专业

本科

研究生

1)根据表中的数据,能否在犯错概率不超过的前提下认为就业专业是否为毕业所学专业与毕业生学历有关;

2)为了进一步分析和了解本科毕业生就业的问题,按分层抽样的原则从本科毕业生中抽取一个容量为的样本,要从人中任取人参加座谈,求被选取的人中至少有人就业非毕业所学专业的概率.

附:,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】研学旅行是研究性学习和旅行体验相结合的校外教育活动,继承和发展了我国传统游学、读万卷书,行万里路的教育理念和人文精神,成为素质教育的新内容和新方式,提升中小学生的自理能力、创新精神和实战能力,是综合实战育人的有效途径,为了了解某校高二年级600名学生在一次研学旅行活动中的武术表演情况,研究人员在该校高二学生中随机抽取了10名学生的武术表演成绩进行统计,统计结果如图所示(满分100分),已知这10名学生或武术表演的平均成绩为85.

1)求m的值;

2)为了研究高二男、女生的武术表演情况,现对该校高二所有学生的武术表演成绩进行分类统计,得到的数据如下表所示:

男生

女生

合计

武术表演成绩超过80

150

武术表演成绩不超过80

100

合计

已知随机抽取这600名学生中的一名学生,抽到武术表演成绩超过80分的学生概率是,根据已知条件完成上面列联表,并据此判断是否有的把握认为武术表演成绩超过80分与性别具有相关性.

参考公式:,其中.

临界值表:

P

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】贵阳河滨公园是市民休闲游玩的重要场所,某校社团针对“公园环境评价”随机对位市民进行问卷调查打分(满分100分)得茎叶图如下:

1)写出女性打分的中位数和众数;

2)从打分在分以下(不含分)的市民中随机请人进一步提建议,求这人都是男性市民的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某亲子游戏结束时有一项抽奖活动,抽奖规则是:盒子里面共有4个小球,小球上分别写有0123的数字,小球除数字外其他完全相同,每对亲子中,家长先从盒子中取出一个小球,记下数字后将小球放回,孩子再从盒子中取出一个小球,记下小球上数字将小球放回.抽奖活动的奖励规则是:若取出的两个小球上数字之积大于4,则奖励飞机玩具一个;若取出的两个小球上数字之积在区间上,则奖励汽车玩具一个;若取出的两个小球上数字之积小于1,则奖励饮料一瓶.

1)求每对亲子获得飞机玩具的概率;

2)试比较每对亲子获得汽车玩具与获得饮料的概率,哪个更大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在定义域上的导函数为,若函数没有零点,且,当上与上的单调性相同时,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=a1nxax+1aRa≠0).

1)求函数fx)的单调区间;

2)求证:n≥2nN*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别为双曲线的左、右焦点。若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线与抛物线的准线围成三角形的面积为(

A. B.

C. D.

查看答案和解析>>

同步练习册答案