精英家教网 > 高中数学 > 题目详情
已知定点A(1,0),定直线l:x=5,动点M(x,y)
(1)若M到点A的距离与M到直线l的距离之比为
5
5
,试求M的轨迹曲线C1的方程;
(2)若曲线C2是以C1的焦点为顶点,且以C1的顶点为焦点,试求曲线C2的方程;
(3)是否存在过点F(
5
,0)的直线m,使其与曲线C2交得弦|PQ|长度为8呢?若存在,则求出直线m的方程;若不存在,试说明理由.
(1)∵定点A(1,0),定直线l:x=5,动点M(x,y),
M到点A的距离与M到直线l的距离之比为
5
5

∴根据椭圆定义:M的轨迹为椭圆,
其中c=1,e=
c
a
=
5
5

∴a=
5

∴b=
5-1
=2
∴则C1轨迹方程为:
x2
5
+
y2
4
=1

(2)∵C1轨迹方程为:
x2
5
+
y2
4
=1

∴C1的焦点为:(1,0),(-1,0),C1的顶点为:(
5
,0),(-
5
,0)
由题意可知:C2为双曲线
则a′=1,c'=
5

则b′=
5-1
=2,
∴C2轨迹方程为:x2-
y2
4
=1.
(3)当直线m的斜率不存在时,m的方程为:x=
5

它与C2:x2-
y2
4
=1交于P(
5
,-4)和Q(
5
,4
),得到得弦|PQ|=8.
当直线m的斜率存在时,m的方程为y=k(x-
5
),
联立方程组  
5y=k(x-
5
)
x2-
y2
4
=1
,消去y,
整理得(4-k2)x2+2
5
k2x-5k2-4=0

设P(x1,y1),Q(x2,y2),则x1+x2=
2
5
k2
k2-4
x1x2=
4+5k2
k2-1

∵弦|PQ|长度为8,∴
(1+k2)[(
2
5
k2
k2-4
)
2
-
16+20k2
k2-4
]
=8,
解得k=±
6
2

∴直线m的方程为x=
5
或y=±
6
2
(x-
5
).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知定点A(1,0),定圆C:(x+1)2+y2=8,M为圆C上的一个动点,点P在线段AM上,点N在线段CM上,且满足
AM
=2
AP
NP
AM
=0
,则点N的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax
x+b
,且f(1)=1,f(-2)=4.
(1)求a、b的值;
(2)已知定点A(1,0),设点P(x,y)是函数y=f(x)(x<-1)图象上的任意一点,求|AP|的最小值,并求此时点P的坐标;
(3)当x∈[1,2]时,不等式f(x)≤
2m
(x+1)|x-m|
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(1,0)和定直线x=-1上的两个动点E、F,满足
AE
AF
,动点P满足
EP
OA
FO
OP
(其中O为坐标原点).
(1)求动点P的轨迹C的方程;
(2)过点B(0,2)的直线l与(1)中轨迹C相交于两个不同的点M、N,若
AM
AN
<0
,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(1,0),定直线l:x=5,动点M(x,y)
(Ⅰ)若M到点A的距离与M到直线l的距离之比为
5
5
,试求M的轨迹曲线C1的方程.
(Ⅱ)若曲线C2是以C1的焦点为顶点,且以C1的顶点为焦点,试求曲线C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(1,0)和定圆B:x2+y2+2x-15=0,动圆P和定圆B相切并过A点,
(1)求动圆P的圆心P的轨迹C的方程.
(2)设Q是轨迹C上任意一点,求∠AQB的最大值.

查看答案和解析>>

同步练习册答案