精英家教网 > 高中数学 > 题目详情

【题目】如图,已知是矩形, 分别为边 的中点, 交于点,沿将矩形折起,设 ,二面角的大小为.

(1)当时,求的值;

(2)点时,点是线段上一点,直线与平面所成角为.若,求线段的长.

【答案】(1)(2)

【解析】试题解析:(1)当时,根据二面角定义可知:平面平面,于是,可以过点建立空间直角坐标系,然后根据,求出两点坐标,然后根据即可求出结果;(2)时即 为等边三角形,于是可以求得点,设平面的法向量为,求出法向量的坐标,因为为线段上一点,所以可设,然后可以将点坐标用表示,从而得出的坐标,然后可以与平面的法向量进行运算,得出的值,就可以得到线段的长度.

试题解析:如图,设的中点,建立如图所示的空间直角坐标系.

(1)当时,

.

(2)由

,则

设平面的法向量为

,取

由题意,得,即

(舍去),

在线段上存在点,且.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】所对应的边分别为( )

A B3 C或3 D3或

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,动点 分别在轴, 轴上运动, 为平面上一点, ,过点平行于轴交的延长线于点.

(Ⅰ)求点的轨迹曲线的方程;

(Ⅱ)过点作轴的垂线,平行于轴的两条直线 分别交曲线 两点(直线不过),交 两点.若线段中点的轨迹方程为,求的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , S7=0,a3﹣2a2=12.
(1)求数列{an}的通项公式;
(2)求Sn﹣15n+50的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=﹣ ,an+1= (n∈N+
(1)证明数列{ }是等差数列并求{an}的通项公式.
(2)数列{bn}满足bn= (n∈N+).求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形中, 分别在上, ,现将四边形沿折起,使得平面平面.

(1)当,是否在折叠后的上存在一点,使得平面?若存在,求出点位置,若不存在,说明理由;

2)设,问当为何值时,三棱锥的体积有最大值?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品.为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如下表所示:

已知.

(1)求出的值;

(2)已知变量 具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程

(3)用表示用正确的线性回归方程得到的与对应的产品销量的估计值.当销售数据的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个销售数据中任取2个,求抽取的2个销售数据中至少有1个是“好数据”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,已知曲线C的参数方程为 (t为参数)

(1)若曲线C在点(1,1)处的切线为l,求l的极坐标方程;

(2)若点A的极坐标为,且当参数t[0π]时,过点A的直线m与曲线C有两个不同的交点,试求直线m的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经销商经销某种农产品,在一个销售季度内,每售出该产品获利润500元,未售出的产品,每亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如图所示.经销商为下一个销售季度购进了该农产品.以)表示下一个销售季度内的市场需求量, (单位:元)表示下一个销售季度内经销该农产品的利润.

(Ⅰ)将表示为的函数;

(Ⅱ)根据直方图估计利润不少于57000元的概率.

查看答案和解析>>

同步练习册答案