精英家教网 > 高中数学 > 题目详情

【题目】棱台的三视图与直观图如图所示.

(1)求证:平面平面

(2)在线段上是否存在一点,使与平面所成的角的正弦值为?若存在,指出点的位置;若不存在,说明理由.

【答案】1见解析.2的中点.

【解析】试题分析:(1)首先根据三视图特征可得平面 为正方形,所以.再由即可得线面垂直从而得出面面垂直(2)直接建立空间坐标系写出各点坐标求出法向量,在根据向量的交角公式得出等式求出

解析:(1)根据三视图可知平面 为正方形,

所以.

因为平面,所以

又因为,所以平面.

因为平面,所以平面平面.

(2)以为坐标原点, 所在直线分别为轴建立空间直角坐标系,如图所示,

根据三视图可知为边长为2的正方形, 为边长为1的正方形,

平面,且.

所以 .

因为上,所以可设.

因为,所以 .

所以 .

设平面的法向量为

根据

,可得,所以.

与平面所成的角为

所以 .

所以,即点的中点位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数的单调递减区间;

(2)若,求函数在区间上的最大值;

(3)若在区间上恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的单调区间;

2)若在区间上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中, 平面 的中点.

(Ⅰ)求四棱锥的体积;

(Ⅱ)设点在线段上,且直线与平面所成角的正弦值为,求线段的长度;

判断线段上是否存在一点,使得?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某粮库拟建一个储粮仓如图所示,其下部是高为2的圆柱,上部是母线长为2的圆锥,现要设计其底面半径和上部圆锥的高,若设圆锥的高,储粮仓的体积为.

(1)求关于的函数关系式;(圆周率用表示)

(2)求为何值时,储粮仓的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某商场旅游鞋的日销售情况,现抽取部分顾客购鞋的尺码,将所得数据绘成如图所示频率分布直方图,已知图中从左到右前三组的频率之比为1:2:3,第二组的频数为10.

(1)用频率估计概率,求尺码落在区间(37.5,43.5]概率约是多少?
(2)从尺码落在区间(37.5,39.5](43.5,45.5]顾客中任意选取两人,记在区间(43.5,45.5]的人数为X,求X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格试销,得到一组销售数据,如下表所示:

(已知 ).

(1)求出的值;

(2)已知变量具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程;(3)用表示用正确的线性回归方程得到的与对应的产品销量的估计值.当销售数据的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个数据中任取2个,求抽取的2个数据中至少有1个是“好数据”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的所有零点的积为m,则有(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案