精英家教网 > 高中数学 > 题目详情
16.已知正三棱柱ABC-A1B1C1的顶点都在球O的球面上,AB=2,AA1=4,则球面O的表面积为(  )
A.$\frac{32π}{3}$B.32πC.64πD.$\frac{64π}{3}$

分析 根据对称性,可得球心O到正三棱柱的底面的距离为1,球心O在底面ABC上的射影为底面的中心O',求出O'A,由球的截面的性质,求得半径OA,再由球面O的表面积公式,计算即可得到.

解答 解:根据对称性,可得球心O到正三棱柱的底面的距离为2,
球心O在底面ABC上的射影为底面的中心O',
则O'A=$\frac{2}{3}×\frac{\sqrt{3}}{2}×2$=$\frac{2\sqrt{3}}{3}$,
由球的截面的性质,可得,OA2=OO'2+O'A2
则有OA=$\sqrt{4+\frac{4}{3}}$=$\frac{4}{\sqrt{3}}$,
则球面O的表面积为4π•OA2=$\frac{64π}{3}$
故选D.

点评 本题考查球的截面的性质,考查球与正三棱柱的关系,考查球的表面积运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)对任意的x,y∈R,总有f(x+y)=f(x)+f(y).
(1)判断函数f(x)的奇偶性并证明;
(2)若x<0时恒有f(x)>0,判断函数f(x)的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-x+12,x≥5}\\{{2}^{x},x<5}\end{array}\right.$,若f(f(a))=16,则 a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设等比函数{an}的前n项和为Sn,若$\frac{{S}_{6}}{{S}_{3}}$=3,则$\frac{{S}_{12}}{{S}_{9}}$=(  )
A.$\frac{7}{3}$B.$\frac{15}{7}$C.$\frac{17}{7}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知等比数列{an}中,a1+a2=3,a3+a4=12,则a5+a6=(  )
A.3B.15C.48D.63

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),离心率为$\frac{\sqrt{3}}{2}$,两焦点分别为F1、F2,过F1的直线交椭圆C于M、N两点,且△MF2N的周长为8.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若|MN|=$\frac{8}{5}$,求△MF2N的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l1,l2方程分别为2x-y=0,x-2y+3=0,且l1,l2的交点为P.
(1)求过点P且与直线x+3y-5=0垂直的直线方程;
(2)若直线l过点P,且坐标原点到直线l的距离为1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.①$y=2{x^2}+\frac{4}{x}$的最小值为6;
②当a>0,b>0时,$\frac{1}{a}+\frac{1}{b}+2\sqrt{ab}≥4$;
③$y=x{(1-2x)^2},(0<x<\frac{1}{2})$最大值为$\frac{2}{27}$;
④当且仅当a,b均为正数时,$\frac{a}{b}+\frac{b}{a}≥2$恒成立.
以上命题是真命题的是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f (x)=${e^x}-\frac{1}{x}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案