精英家教网 > 高中数学 > 题目详情

【题目】椭圆的上、下焦点分别为,右顶点为B,且满足

求椭圆的离心率e

P为椭圆上异于顶点的点,以线段PB为直径的圆经过点,问是否存在过的直线与该圆相切?若存在,求出其斜率;若不存在,说明理由.

【答案】(Ⅰ);(Ⅱ)存在满足条件的直线,斜率为.

【解析】

根据可得,即可求出椭圆的离心率,

由已知得故椭圆方程为,设,求出点P的坐标,再求出线段PB为直径的圆的圆心坐标,根据直线和圆的位置关系可得.

解:,右顶点为B

为等腰三角形,

椭圆的离心率

由已知得

故椭圆方程为,设

又因为点P在椭圆上,故

由以上两式可得

P不在椭圆的顶点,

设圆的圆心为,则

则圆的半径

假设存在过的直线满足题设条件,并设该直线的方程为

由相切可知

即得,解得

故存在满足条件的直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程为,直线,直线 .以极点为原点,极轴为轴的正半轴建立平面直角坐标系.

(1)求直线的直角坐标方程以及曲线的参数方程;

(2)已知直线与曲线交于两点,直线与曲线交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在常数,使得对定义域内的任意,都有成立,则称函数在其定义域 上是“利普希兹条件函数”.

(1)若函数是“利普希兹条件函数”,求常数的最小值;

(2)判断函数是否是“利普希兹条件函数”,若是,请证明,若不是,请说明理由;

(3)若是周期为2的“利普希兹条件函数”,证明:对任意的实数,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关平面向量分解定理的四个命题:

1)一个平面内有且只有一对不平行的向量可作为表示该平面所有向量的基;

2)一个平面内有无数多对不平行向量可作为表示该平面内所有向量的基;

3)平面向量的基向量可能互相垂直;

4)一个平面内任一非零向量都可唯一地表示成该平面内三个互不平行向量的线性组合.

其中正确命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济的飞速发展,人民生活水平得到很大提高,汽车已经进入千千万万的家庭.大部分的车主在购买汽车时,会在轿车或者中作出选择,为了研究某地区哪种车型更受欢迎以及汽车一年内的行驶里程,某汽车销售经理作出如下统计:

购买了轿车(辆)

购买了(辆)

岁以下车主

岁以下车主

(1)根据表,是否有的把握认为年龄与购买的汽车车型有关?

(2)图给出的是名车主上一年汽车的行驶里程,求这名车主上一年汽车的平均行驶里程(同一组中的数据用该组区间的中点值作代表);

(3)用分层抽样的方法从岁以上车主中抽取人,再从这人中随机抽取人赠送免费保养券,求这人中至少有辆轿车的概率。

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,动点P是圆M上的任意一点,线段NP的垂直平分线和半径MP相交于点Q

的值,并求动点Q的轨迹C的方程;

若圆的切线l与曲线C相交于AB两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点P在圆柱的底面圆上,AB为圆的直径,圆柱的表面积为20π

(1)求异面直线AP所成角的大小(结果用反三角函数值表示)

(2)求点A到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),等腰梯形分别是的两个三等分点,若把等腰梯形沿虚线折起,使得点和点重合,记为点 如图(2).

1)求证:平面平面

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P是椭圆上一点,MN分别是两圆(x+4)2y2=1(x-4)2y2=1上的点,则|PM|+|PN|的最小值、最大值分别为 ( )

A. 9,12 B. 8,11 C. 10,12 D. 8,12

查看答案和解析>>

同步练习册答案