精英家教网 > 高中数学 > 题目详情
已知抛物线y2=4x上两定点A、B分别在对称轴两侧,F为焦点,且|AF|=2,|BF|=5,在抛物线的AOB一段上求一点P,使S△ABP最大,并求面积最大值.
分析:先由题设条件知,|FA|=2,|FB|=5,可根据抛物线的定义求得点A、B的坐标;再由两点坐标已知,故由两点间距离公式求出两点的距离,由直线方程的两点式求出直线AB的方程;欲求△PAB的面积最大值可转化为求点P到直线AB的距离的最大值,设出点P的坐标,由点到直线的距离公式建立起点P到直线AB的距离的函数关系式,利用函数的知识求出最值即可.
解答:精英家教网解:不妨设点A在第一象限,B点在第四象限.如图.
抛物线的焦点F(1,0),点A在第一象限,设A(x1,y1),y1>0,
由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);
同理B(4,-4),…(4分)
由A(1,2),B(4,-4)得 |AB|=
(1-4)2+(2+4)2
=3
5
…(6分)
直线AB的方程为
y-2
-4-2
=
x-1
4-1
,化简得2x+y-4=0.…(8分)
再设在抛物线AOB这段曲线上任一点P(x0,y0),且0≤x0≤4,-4≤y0≤2.
则点P到直线AB的距离d=
|2x0+y0-4|
1+4
=
|2×
y0 2
4
+y0-4|
5
=
|
1
2
(y0+1)2-
9
2
|
5
 …(9分)
所以当y0=-1时,d取最大值
9
5
10
,…(10分)
所以△PAB的面积最大值为S=
1
2
×3
5
×
9
5
10
=
27
4
 …(11分)
此时P点坐标为(
1
4
,-1).…(12分).
点评:本小题主要考查抛物线的应用、直线与圆锥曲线的位置关系、两点间距离公式、点到直线的距离公式、直线方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F,其准线与x轴交于点M,过M作斜率为k的直线与抛物线交于A、B两点,弦AB的中点为P,AB的垂直平分线与x轴交于点E(x0,0).
(1)求k的取值范围;
(2)求证:x0>3;
(3)△PEF能否成为以EF为底的等腰三角形?若能,求此k的值;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线
y
2
 
=4x
的焦点为F,过点A(4,4)作直线l:x=-1垂线,垂足为M,则∠MAF的平分线所在直线的方程为
x-2y+4=0
x-2y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,焦点为F,顶点为O,点P(m,n)在抛物线上移动,Q是OP的中点,M是FQ的中点.
(1)求点M的轨迹方程.
(2)求
nm+3
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x与直线2x+y-4=0相交于A、B两点,抛物线的焦点为F,那么|
FA
|+|
FB
|
=
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,其焦点为F,P是抛物线上一点,定点A(6,3),则|PA|+|PF|的最小值是
7
7

查看答案和解析>>

同步练习册答案