分析 构造函数f(x)=x2-2ax+a+2,根据根与系数之间的关系建立不等式关系即可得到结论.
解答 解:设f(x)=x2-2ax+a+2,
∵1<α<2<β<3,
∴$\left\{\begin{array}{l}{f(1)>0}\\{f(2)<0}\\{f(3)>0}\end{array}\right.$,即$\left\{\begin{array}{l}{1-2a+a+2=3-a>0}\\{4-4a+a+2=6-3a<0}\\{9-6a+a+2=11-5a>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{a<3}\\{a>2}\\{a<\frac{11}{5}}\end{array}\right.$,即2<a<$\frac{11}{5}$,
故答案为:$({2,\frac{11}{5}})$
点评 本题主要考查函数与方程的应用,根据根与系数之间,转化为函数是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | C${\;}_{5}^{2}$A${\;}_{4}^{4}$ | B. | C${\;}_{5}^{2}$64 | C. | A${\;}_{5}^{2}$A${\;}_{4}^{4}$ | D. | A${\;}_{5}^{2}$64 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,$\frac{1}{2}$) | B. | ($\frac{1}{2}$,0) | C. | (0,$\frac{1}{8}$) | D. | ($\frac{1}{8}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | -1 | C. | ±1 | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com