精英家教网 > 高中数学 > 题目详情
15.若幂函数f(x)=xa(a∈R)的图象过点(2,$\sqrt{2}$),则a的值是$\frac{1}{2}$,函数f(x)的递增区间是[0,+∞).

分析 利用待定系数法求出a的值,写出函数f(x)的解析式,再得出f(x)的递增区间.

解答 解:幂函数f(x)=xa(a∈R)的图象过点(2,$\sqrt{2}$),
则2a=$\sqrt{2}$,
解得a=$\frac{1}{2}$;
所以函数f(x)=${x}^{\frac{1}{2}}$=$\sqrt{x}$,
所以f(x)的递增区间是[0,+∞).
故答案为:$\frac{1}{2}$,[0,+∞).

点评 本题考查了幂函数的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下列命题中,正确的一个命题是(  )
A.“?x∈R,使得x2-1<0”的否定是:“?x∈R,均有x2-1>0”
B.“若x=3,则x2-2x-3=0”的否命题是:“若x≠3,则x2-2x-3≠0”
C.“存在四边相等的四边形不是正方形”是假命题
D.“若cosx=cosy,则x=y”的逆否命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知($\sqrt{x}$+$\frac{2}{\sqrt{x}}$)n展开式中第二、三、四项的二项式系数成等差数列.
(Ⅰ)求n的值;
(Ⅱ)此展开式中是否有常数项?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l1:x+y-2=0,直线l2过点A(-2,0)且与直线l1平行.
(1)求直线l2的方程;
(2)点B在直线l1上,若|AB|=4,求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将函数y=sin(x-$\frac{π}{6}$)图象上所有的点(  ),可以得到函数y=sin(x+$\frac{π}{6}$)的图象.
A.向左平移$\frac{π}{3}$单位B.向右平移$\frac{π}{3}$单位C.向左平移$\frac{π}{6}$单位D.向右平移$\frac{π}{6}$单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出下列叙述:
①若α,β均为第一象限,且α>β,则sinα>sinβ
②函数f(x)=sin(2x-$\frac{π}{3}$)在区间[0,$\frac{5π}{12}$]上是增函数;
③函数f(x)=cos(2x+$\frac{π}{3}$)的一个对称中心为(-$\frac{π}{6}$,0)
④记min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,若函数f(x)=min{sinx,cosx},则f(x)的值域为[-1,$\frac{\sqrt{2}}{2}$].
其是叙述正确的是②④(请填上序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若复数z满足$\frac{i}{z-1}=\frac{1}{2}$(i为虚数单位),则z=1+2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}x}}$的定义域为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题:
(1)“若am2≥bm2,则a≥b”的否命题;
(2)“全等三角形面积相等”的逆命题;
(3)“若a>1,则关于x的不等式ax2≥0的解集为R”的逆否命题;
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案