精英家教网 > 高中数学 > 题目详情
2.已知曲线f(x)=$\frac{1}{3}$x3+ax2+3x-$\frac{5}{6}$(a>-2)在点(1,f(1))处的切线l与坐标轴转成的三角形的面积为$\frac{2}{5}$.
(1)求实数a的值;
(2)若a>0,且对?x1,x2∈[-1,1],2${\;}^{f({x}_{1})-f({x}_{2})-6}$<$\root{3}{m}$恒成立,求实数m的取值范围.

分析 (1)求出导数,求得切线的斜率和切点,由点斜式方程可得切线方程,分别令x=0,y=0,求得与x,y轴的交点,运用三角形的面积公式,解方程可得a的值;
(2)对?x1,x2∈[-1,1],2${\;}^{f({x}_{1})-f({x}_{2})-6}$<$\root{3}{m}$恒成立,即为(2${\;}^{f({x}_{1})-f({x}_{2})-6}$)max<$\root{3}{m}$,由f(x)在[-1,1]递增,可得最值,进而得到(2${\;}^{f({x}_{1})-f({x}_{2})-6}$)max,即可得到m的范围.

解答 解:(1)f(x)=$\frac{1}{3}$x3+ax2+3x-$\frac{5}{6}$的导数为f′(x)=x2+2ax+3,
在点(1,f(1))处的切线斜率为4+2a,切点为(1,a+$\frac{5}{2}$),
即有在点(1,f(1))处的切线方程为y-(a+$\frac{5}{2}$)=(4+2a)(x-1),
令x=0,得y=-a-$\frac{3}{2}$;由y=0,得x=$\frac{a+\frac{3}{2}}{4+2a}$,
则有三角形的面积为$\frac{1}{2}$•$\frac{(a+\frac{3}{2})^{2}}{2a+4}$=$\frac{2}{5}$,
解方程可得a=$\frac{1}{2}$或a=-$\frac{19}{10}$;
(2)对?x1,x2∈[-1,1],2${\;}^{f({x}_{1})-f({x}_{2})-6}$<$\root{3}{m}$恒成立,
即为(2${\;}^{f({x}_{1})-f({x}_{2})-6}$)max<$\root{3}{m}$,
由f′(x)=x2+x+3>0,即f(x)在[-1,1]递增,
即有f(x)的最大值为f(1)=3,最小值为f(-1)=-$\frac{11}{3}$,
可得f(x1)-f(x2)≤3-(-$\frac{11}{3}$)=$\frac{20}{3}$,
即有(2${\;}^{f({x}_{1})-f({x}_{2})-6}$)max=${2}^{\frac{20}{3}-6}$=${2}^{\frac{2}{3}}$,
即${2}^{\frac{2}{3}}$<$\root{3}{m}$,解得m>4.
则m的取值范围是(4,+∞).

点评 本题考查导数的运用:求切线的方程和单调区间、极值和最值,考查函数恒成立问题的解法,注意转化为求函数的最值问题,考查单调性的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知$\frac{3π}{4}$<α<π,tanα+$\frac{1}{tanα}$=-$\frac{10}{3}$.
(1)求tanα的值;
(2)求$\frac{si{n}^{2}(π+α)+2sinαsin(\frac{π}{2}+α)+1}{3sinαcos(\frac{π}{2}-α)-2cosαcos(π-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的函数f(x)是奇函数,对x∈R都有f(2+x)=-f(2-x),则f(2016)=(  )
A.2B.-2C.4D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设球的半径为R.则以它为外接球的正方体的边长为$\frac{2\sqrt{3}}{3}$R,以它为内切球的正方体的边长为2R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}中,a2+a4=16,a5-a3=4.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{4}{{a}_{n}•{a}_{n+1}}$,求证b1+b2+…+bn≥$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列结论不正确的是(  )
A.$\left.\begin{array}{l}{A∈α}\\{a?α}\end{array}\right\}$⇒A∈αB.$\left.\begin{array}{l}{A∈α,A∈β}\\{α∩β=α}\end{array}\right\}$⇒A∈α
C.$\left.\begin{array}{l}{A∈α}\\{A∈β}\end{array}\right\}$⇒α∩β=AD.$\left.\begin{array}{l}{A∈α}\\{B∈α}\end{array}\right\}$⇒AB?α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示.已知直角梯形ABCD,BC∥AD,∠ABC=90°AB=5cm,BC=16cm,AD=4cm,求以AB所在直线为轴旋转一周所得几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求使下列函数取得最大值的自变量x的集合.并写出最大值是什么;同时指出函数图象的对称轴和对称中心.
 (1)y=cos$\frac{x}{3}$;
(2)y=2-sin2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的函数y=f(x),满足f(x+2)=-$\frac{1}{f(x)}$,则(  )
A.f(x)不是周期函数B.f(x)是周期函数,且最小正周期为2
C.f(x)是周期函数,且最小正周期为4D.f(x)是周期函数,且4是它的一个周期

查看答案和解析>>

同步练习册答案