A. | $\frac{2\sqrt{2}}{3}$ | B. | $\frac{\sqrt{10}}{3}$ | C. | $\sqrt{10}$ | D. | $\frac{2\sqrt{390}}{39}$ |
分析 求出抛物线的焦点坐标,写出双曲线的渐近线方程,利点到直线的距离列出关系式即可求出双曲线的离心率.
解答 解:抛物线y2=-4$\sqrt{2}$x的焦点(-$\sqrt{2}$,0),双曲线的渐近线为:y=±$\frac{b}{a}$x,
抛物线y2=-4$\sqrt{2}$x的焦点到双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=l(a>0,b>0)的一条渐近线的距离为$\frac{\sqrt{5}}{5}$,
可得:$\frac{\left|\sqrt{2}b\right|}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{\sqrt{5}}{5}$,即9b2=a2,即9c2-9a2=a2,
解得e=$\frac{\sqrt{10}}{3}$.
故选:B.
点评 本题考查抛物线的简单性质与双曲线的简单性质的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
A. | $\frac{625}{6}$ | B. | $\frac{250}{6}$ | C. | $\frac{375}{6}$ | D. | $\frac{125}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{7}{2}$ | D. | -$\frac{7}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{9}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{a}{\sqrt{1-{a}^{2}}}$ | B. | $\frac{a}{\sqrt{1-{a}^{2}}}$ | C. | -$\frac{\sqrt{1-{a}^{2}}}{a}$ | D. | $\frac{\sqrt{1-{a}^{2}}}{a}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com