精英家教网 > 高中数学 > 题目详情
11.已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是$\frac{8000}{3}$ cm3

分析 由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,代入锥体体积公式,可得答案.

解答 解:由已知中的三视图可得:该几何体是一个以侧视图为底面的四棱锥,
其底面面积S=20×20=400cm2
高h=20cm,
故体积V=$\frac{1}{3}Sh$=$\frac{8000}{3}$cm3
故答案为:$\frac{8000}{3}$

点评 本题考查的知识点是棱锥的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.命题p:“关于x的不等式x2+(a-1)x+a2≤0,(a>0)的解集为∅”,命题q:“在区间[-2,4]上随机地取一个数x,若x满足|x|≤a(a>0)的概率$P≥\frac{5}{6}$”,当“p∧q”与“p∨q”一真一假时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.$\sqrt{1-{{sin}^2}\frac{π}{5}}$的化简结果是(  )
A.$cos\frac{π}{5}$B.$-cos\frac{π}{5}$C.$±cos\frac{π}{5}$D.$sin\frac{π}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列有关命题的说法错误的为(  )
A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
B.“|x|<2”是“x2-x-6<0”的充分不必要条件
C.命题“存在∈R,使得x2+x+1<0”的否定是“对任意x∈R,均有x2+x+1≥0”
D.若p∧q为假命题,则p,q均为假

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为2,抛物线E:x2=2y的准线与椭圆C相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与椭圆C相交于A,B两点且与抛物线E在第一象限相切于点P,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M,求$\frac{{S}_{△PFG}}{|OG|}$的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC的三个顶点的坐标分别为A(3,0),B(4,6),C(0,8).
(1)求BC边上的高所在直线l的方程;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.长方体ABCD-A1B1C1D1的底面是边长为2的正方形,若在侧棱AA1上至少存在一点E,使得∠C1EB=90°,则侧棱AA1的长的最小值(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a=log43,b=log34,c=log53,则(  )
A.a>b>cB.b>a>cC.b>c>aD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为63,98,则输出的a=(  )
A.9B.3C.7D.14

查看答案和解析>>

同步练习册答案