精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCD-A1B1C1D1中,AA1=a,E,F分别是BC,DC的中点.求异面直线AD1与EF所成角的大小.
连接BC1、BD和DC1
在正方体ABCD-A1B1C1D1中,
由AB=D1C1,ABD1C1,可知AD1BC1
在△BCD中,E,F分别是BC,DC的中点,所以,有EFBD,
所以∠DBC1就是异面直线AD1与EF所成角,
在正方体ABCD-A1B1C1D1中,BC1、BD和DC1是其三个面上的对角线,它们相等.
所以△DBC1是正三角形,∠DBC1=60°
故异面直线AD1与EF所成角的大小为60°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

D是△ABCBC边上一点,把△ACD沿AD折起,使C点所处的新位置C′在平面ABD上的射影H恰好在AB上.
(1)求证:直线CD与平面ABD和平面AHC′所成的两个角之和不可能超过90°;
(2)若∠BAC=90°,二面角C′—ADH为60°,求∠BAD的正切值.
???

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线与平面所成角为,则所成角的取值范围是  _________  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

MN是直角梯形ABCD两腰的中点,DEABE (如图). 现将沿DE折起,使二面角的大小为,此时点A在平面BCDE内的射影恰为点B,则MN的连线与AE所成角的大小为             .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

文(12分)已知四棱锥P-ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.(1)求点P到平面ABCD的距离;(2)求PD与AB所成角的大小;(3)求二面角A—PB—C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体ABCD-A1B1C1D1中,直线C1B与D1C所成角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知三棱柱ABC-A1B1C1的各条棱长都相等,且CC1⊥底面ABC,则异面直线BC1与AC所成角的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC⊥BC,AC=3,BC=4,AA1=4,
(1)求异面直线AB与B1C所成角的余弦值;
(2)求证:面ACB1⊥面ABC1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知A、B、C是球O的球面上三点,∠BAC=90°,AB=2,BC=4,球O的表面积为48π,则异面直线AB与OC所成角余弦值为______.

查看答案和解析>>

同步练习册答案