精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的两个焦点坐标分别是,并且经过点.

(1)求椭圆的方程;

(2)若直线与圆相切,并与椭圆交于不同的两点.,且满足时,求面积的取值范围.

【答案】(1);(2).

【解析】

试题分析:(1)设出椭圆方程,根据题意列方程组,求出待定系数的值;(2)可设直线方程为,根据其与圆相切可得,联立方程组可得,根据韦达定理求出,所以整理可得,根据向量数量积的定义可得,换元设,则,最后再根据均值不等式求出面积的取值范围.

试题解析:(1)设椭圆方程为

由条件有解得.

椭圆的方程为:.

(2)依题结合图形知直线的斜率不为零,

直线与圆相切,

.

消去整理得

.

,点到直线的距离

.

,令,则

的取值范围为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修41:几何证明选讲

如图,已知AP是O的切线,P为切点,AC是O的割线,与O交于B、C两点,圆心O在PAC的内部,点M是BC的中点.

1证明:A、P、O、M四点共圆;

2OAM+APM的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为3的正三角形中, 分别是边上的点,满足如图,将折起到的位置上,连接如图.

1在线段A1C上是否存在点Q,使得面QFP//面A1EB,证明你的结论;

2求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, ,侧面为等边三角形, .

(Ⅰ)证明: 平面

(Ⅱ)求与平面所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

已知集合,则的充分不必要条件;

②“的必要不充分条件;

③“函数的最小正周期为的充要条件;

④“平面向量的夹角是钝角的要条件是.

其中正确命题的序号是 .(把所有正确命题的序号都写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在扶贫活动中,为了尽快脱贫无债务致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费不计息.在甲提供的资料中:这种消费品的进价为每件14元;该店月销量Q百件与销售价格P的关系如图所示;每月需各种开支2 000元.

1当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;

2企业乙只依靠该店,最早可望在几年后脱贫?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016 年1 月1 日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取后和后作为调查对象,随机调查了位,得到数据如下表:

)以这个人的样本数据估计该市的总体数据,且以频率估计概率,若从该市后公民中随机抽取位,记其中生二胎的人数为,求随机变量的分布列和数学期望;

)根据调查数据,是否有 以上的把握认为“生二胎与年龄有关”,并说明理由:

参考数据:

参考公式:,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是一个公差为d(d≠0)的等差数列,它的前10项和S10=110,且a1,a2,a4成等比数列。

(1)证明:a1=d;

(2)求公差d的值和数列{an}的通项公式。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是不同的直线, 是不同的平面,已知,下列说法正确的是 ( )

A. ,则 B. ,则

C. ,则 D. ,则

查看答案和解析>>

同步练习册答案