精英家教网 > 高中数学 > 题目详情
15.若圆C:(x+a)2+y2=4上恰有两个点到原点的距离为1,则实数a的取值范围是0<a<2$\sqrt{2}$或-2$\sqrt{2}$<a<0.

分析 根据题意知:圆(x+a)2+y2=4和以原点为圆心,1为半径的圆x2+y2=1相交,因此两圆圆心距大于两圆半径之差、小于两圆半径之和,列出不等式,解此不等式即可.

解答 解:圆(x+a)2+y2=4和圆x2+y2=1相交,两圆圆心距d=$\sqrt{{a}^{2}+1}$,
∴2-1<$\sqrt{{a}^{2}+1}$<2+1,
∴0<a<2$\sqrt{2}$或-2$\sqrt{2}$<a<0.
故答案为:0<a<2$\sqrt{2}$或-2$\sqrt{2}$<a<0.

点评 本题体现了转化的数学思想,解题的关键在于将问题转化为:圆(x+a)2+y2=4和圆x2+y2=1相交,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若f(x-1)=x,则f(1)=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.因式分解:2x2-4x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设不等式($\frac{1}{2}$)${\;}^{{x}^{2}-x}$>1的解集为M.
(1)求集合M;
(2)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x2)的定义域为[-$\frac{1}{2}$,2],则y=f(x)的定义域为[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin(2x+φ)(0<φ<$\frac{π}{2}$)图象的一条对称轴为x=$\frac{π}{12}$,则要得到函数F(x)=f′(x)-f(x+$\frac{π}{12}$)的图象,只需把函数f(x)的图象(  )
A.向左平移$\frac{π}{6}$个单位,纵坐标伸长为原来的$\sqrt{3}$倍
B.向右平移$\frac{π}{6}$个单位,纵坐标伸长为原来的$\sqrt{3}$倍
C.向左平移$\frac{π}{3}$个单位,纵坐标伸长为原来的$\sqrt{3}$倍
D.向右平移$\frac{π}{3}$个单位,纵坐标伸长为原来的$\sqrt{3}$倍

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若{5}⊆A⊆{3,4,5,6,7}且对集合A中任意一个元素a∈A,则有10-a∈A,则符合条件的集合A有4个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知命题p:方程x2-mx+1=0有实数解,命题q:x2-2x+m>0对任意x恒成立,若命题q∨(p∧q)为真,¬p为真,则实数m的取值范围是1<m<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若直线4x-3y-12=0被两坐标轴截得的线段长为$\frac{1}{c}$,则c的值为$\frac{1}{5}$.

查看答案和解析>>

同步练习册答案