【题目】椭圆()的离心率等于,它的一个长轴端点恰好是抛物线的焦点.
(1)求椭圆的方程;
(2)若直线与椭圆有且只有一个公共点,且直线与直线和分别交于两点,试探究以线段为直径的圆是否恒过定点?若恒过定点,求出该定点,若不恒过定点,请说明理由.
科目:高中数学 来源: 题型:
【题目】古希腊数学家阿波罗尼奥斯在他的著作《圆锥曲线论》中记载了用平面切制圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的轴重合),已知两个圆锥的底面半径为1,母线长均为,记过圆锥轴的平面ABCD为平面(与两个圆锥面的交线为AC、BD),用平行于的平面截圆锥,该平面与两个圆锥侧面的截线即为双曲线E的一部分,且双曲线E的两条渐近线分别平行于AC、BD,则双曲线E的离心率为( )
A.B.C.D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在上的函数和数列满足下列条件:,当且时,且,其中均为非零常数.
(1)数列是等差数列,求的值;
(2)令,若,求数列的通项公式;
(3)证明:数列是等比数列的充要条件是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某高中学生的体能测试结果中,随机抽取100名学生的测试结果,按体重分组得到如图所示的频率分布直方图.
(1)若该校约有的学生体重不超过“标准体重”,试估计的值,并说明理由;
(2)从第3、4、5组中用分层抽样的方法抽取6名学生进行了第二次测试,现从这6人中随机抽取2人进行日常运动习惯的问卷调查,求抽到4组的人数的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校有30位高级教师,其中60%人爱好体育锻炼,经体检调查,得到如下列联表.
身体好 | 身体一般 | 总计 | |
爱好体育锻炼 | 2 | ||
不爱好体育锻炼 | 4 | ||
总计 | 20 |
(1)根据以上信息完成列联表,并判断有多大把握认为“身体好与爱好体育锻炼有关系”?
(2)现从身体一般的教师中抽取3人,记3人中爱好体育锻炼的人数为,求的分布列及数学期望.
参考公式:,其中.
临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为弘扬中华优秀传统文化,某中学高三年级利用课余时间组织学生开展小型知识竞赛.比赛规则:每个参赛者回答A、B两组题目,每组题目各有两道题,每道题答对得1分,答错得0分,两组题目得分的和做为该选手的比赛成绩.小明估计答对A组每道题的概率均为,答对B组每道题的概率均为.
(Ⅰ)按此估计求小明A组题得分比B组题得分多1分的概率;
(Ⅱ)记小明在比赛中的得分为ξ,按此估计ξ的分布列和数学期望Eξ.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,是椭圆上一点,轴,.
(1)求椭圆的标准方程;
(2)若直线与椭圆交于、两点,线段的中点为,为坐标原点,且,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com