精英家教网 > 高中数学 > 题目详情

【题目】设Sn是公差不为0的等差数列{an}的前n项和,且S1 , S2 , S4成等比数列,a5=9.
(1)求数列{an}的通项公式;
(2)证明: + +…+ (n∈N*).

【答案】
(1)解:由题意知

设{an}的公差为d,则

解得:

∴an=1+2(n﹣1)=2n﹣1,

故数列{an}的通项公式是an=2n﹣1.


(2)证明:由(1)知

当n=1时,左边= ,故原不等式显然成立.

当n≥2时,因为

=

=

=

综上所述,


【解析】(1)由等比中项可知及等差数列通项公式,即可求得{an}的首项和公差,即可写出数列{an}的通项公式;(2)根据等差数列的前n项和公式 ,当n=1, ,显然成立,当n≥2,采用放缩法及裂项法即可证明 + +…+ =
【考点精析】本题主要考查了等差数列的通项公式(及其变式)和数列的前n项和的相关知识点,需要掌握通项公式:;数列{an}的前n项和sn与通项an的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

求一辆普通6座以下私家车(车险已满三年)在下一年续保时保费高于基本保费的频率;

某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元.且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;

②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校有体育特长生25人,美术特长生35人,音乐特长生40人.用分层抽样的方法从中抽取40人,则抽取的体育特长生、美术特长生、音乐特长生的人数分别为(
A.8,14,18
B.9,13,18
C.10,14,16
D.9,14,17

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|ax﹣1|(a∈R),不等式f(x)>5的解集为{x|x<﹣3或x>2}.
(1)求a的值;
(2)解不等式f(x)﹣f( )≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数f(x)=sinx+ cosx(x∈R),先将y=f(x)的图象上所有点的横坐标缩短到原来的 倍(纵坐标不变),再将得到的图象上所有点向右平行移动θ(θ>0)个单位长度,得到的图象关于直线x= 对称,则θ的最小值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2C﹣3cos(A+B)=1
(1)求角C的大小;
(2)若c= ,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)当时,求函数的单调区间;

(2)若 ,对任意 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),
[240,260),[260,280),[280,300)分组的频率分布直方图如图.

(1)求直方图中x的值;
(2)在月平均用电量为,[220,240),[240,260),[260,280)的三用户中,用分层抽样的方法抽取10居民,则月平均用电量在[220,240)的用户中应抽取多少户?
(3)求月平均用电量的中位数.

查看答案和解析>>

同步练习册答案