A. | 57万元 | B. | 85万元 | C. | 70万元 | D. | 66万元双曲线 |
分析 通过设公司在甲、乙两个电视台做广告的时间分别为x分钟和y分钟,总收益为z元,通过作出可行域、利用目标函数z=3000x+2000y,进而计算可得结论.
解答 解:设公司在甲、乙两个电视台做广告的时间分别为x分钟和y分钟,总收益为z元,
由题意得:$\left\{\begin{array}{l}{x+y≤300}\\{500x+200y≤90000}\\{x≥0}\\{y≥0}\end{array}\right.$,化简得:$\left\{\begin{array}{l}{x+y≤300}\\{5x+2y≤900}\\{x≥0}\\{y≥0}\end{array}\right.$,
目标函数z=3000x+2000y,
作出可行域(如图所示),当直线z=3000x+2000y过点M时,z最大,
由$\left\{\begin{array}{l}{x+y=300}\\{5x+2y=900}\end{array}\right.$得:M(100,200),
∴zmax=3000×100+2000×200=700000(元),
因此该公司在甲电视台做100分钟广告、在乙电视台做200分钟广告,公司收益最大,最大值为70万元,
故选:C.
点评 本题考查函数模型的选择与应用,简单线性规划,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | y=x+$\frac{1}{x}$ | B. | y=sinx+$\frac{1}{sinx}$ | C. | y=$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$ | D. | y=3x+3-x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 8 | B. | 12 | C. | 16 | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 1或2 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,loga2) | B. | (loga2,+∞) | C. | (-∞,${log_a}\frac{{\sqrt{5}+1}}{2}$) | D. | (loga2,loga$\frac{{\sqrt{5}+1}}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com