精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .
(Ⅰ)当 时,求不等式 的解集;
(Ⅱ)若 的解集包含 ,求实数 的取值范围.

【答案】解:(Ⅰ)当 时, ,即 .
时,不等式化为 ,解得
时,不等式化为 ,解得
时,不等式化为 ,解得 .
综上,不等式的解集为
(Ⅱ) 的解集包含 上恒成立,
上恒成立,
上恒成立,
上恒成立,

∴实数 的取值范围是
【解析】(1)当a=4时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.
(2)由题意可得,当x∈[2,3]时,关于x的不等式f(x)| x 4 | 恒成立,由此可得实数a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)=2x2-ln x在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是( )
A.[1,+∞)
B.[1,2)
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆 )的焦距与椭圆 的短轴长相等,且 的长轴长相等,这两个椭圆在第一象限的交点为 ,直线 经过 轴正半轴上的顶点 且与直线 为坐标原点)垂直, 的另一个交点为 交于 两点.

(1)求 的标准方程;
(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点 ,焦点在 轴上,离心率为 的椭圆过点
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆与 轴的非负半轴交于点 ,过点 作互相垂直的两条直线,分别交椭圆于点 两点,连接 ,求 的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥 中,底面 为正方形, 平面 ,且 ,点 在线段 上,且 .

(Ⅰ)证明:平面 平面
(Ⅱ)求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面为等腰梯形的四棱锥 中, 平面 的中点, .

(1)证明: 平面
(2)若 ,求三棱锥 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为半圆 的直径,点 是半圆弧上的两点, .曲线 经过点 ,且曲线 上任意点 满足: 为定值.

(Ⅰ)求曲线 的方程;
(Ⅱ)设过点 的直线 与曲线 交于不同的两点 ,求 面积最大时的直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱 中, 分别是 的中点.

(Ⅰ)求证: 平面
(Ⅱ)若 上一点 满足 ,求 所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,其中 ,存在 使得 成立,则实数 的值是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案