精英家教网 > 高中数学 > 题目详情
3.已知集合A=$\{x|{(\frac{1}{2})^x}<1\}$,B={x|lgx>0}则A∪B等于(  )
A.{x|x>0}B.{x|x>1}C.RD.

分析 求出A与B中不等式的解集分别确定出A与B,找出A与B的并集即可.

解答 解:由A中不等式变形得:($\frac{1}{2}$)x<1=($\frac{1}{2}$)0
解得:x>0,即A={x|x>0},
由B中不等式变形得:lgx>0=lg1,
解得:x>1,即B={x|x>1},
则A∪B={x|x>0},
故选:A.

点评 此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=3cos($\frac{3π}{2}$+2ωx)+sin(2ωx-π)+1,ω>0
(1)若ω=1,f(x+θ)是偶函数,求θ的最小值.
(2)若ω=1,存在x∈[$\frac{π}{12}$,$\frac{π}{3}$],使(f(x)-1)2-(f(x)-1)m+3≤0成立,求m取值范围.
(3)若y=f(x)-1在x∈(0,2015)上至少存在2016个最值点,求ω范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知命题p:y=loga(2-ax)在[0,1]上是减函数;命题$q:y=lg(a{x^2}-x+\frac{a}{12})$的值域是R,若命题“p且q”是假命题,“p或q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有(  )种.
A.432B.384C.308D.288

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,a,b,c分别是角A,B,C的对边,b=4且$\frac{cosB}{cosC}=\frac{4}{2a-c}$.
(1)求角B的大小;
(2)求△ABC的面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知球O的表面积是其直径的$2\sqrt{3}π$倍,则球O的体积为4$\sqrt{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC的三边所在直线方程分别为AB:4x-3y+10=0,BC:y-2=0,CA:3x-4y-5=0.
(1)求∠A的正切值的大小;
(2)求△ABC的重心坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知p:函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x+b在R上是增函数,q:函数f(x)=xa-2在(0,+∞)上是增函数,则p是¬q(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=-4+5cost}\\{y=-5+5sint}\end{array}\right.$(t为参数),以坐标项点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=-2sinθ.
(1)把C1的参数方程化为极坐标系方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

同步练习册答案