精英家教网 > 高中数学 > 题目详情
2.已知向量$\overrightarrow{OA}$=(-3,1),$\overrightarrow{OB}$=(0,5),若$\overrightarrow{AC}$∥$\overrightarrow{OB}$,$\overrightarrow{BC}$⊥$\overrightarrow{AB}$,求向量$\overrightarrow{OC}$的坐标.

分析 设出C(x,y),分别求出向量 $\overrightarrow{AC}$,$\overrightarrow{BC}$,$\overrightarrow{AB}$的坐标,根据“两个向量平行,交叉相乘差为0”,“两个向量垂直,对应相乘和为0”构造方程组,进而求出 $\overrightarrow{OC}$的坐标;

解答 解:设$\overrightarrow{OC}$=(x,y)
则∵向量$\overrightarrow{OA}$=(-3,1),$\overrightarrow{OB}$=(0,5),
∴$\overrightarrow{AC}$=$\overrightarrow{OC}$-$\overrightarrow{OA}$=(x+3,y-1),
$\overrightarrow{BC}$=$\overrightarrow{OC}$-$\overrightarrow{OB}$=(x,y-5),
$\overrightarrow{AB}$=$\overrightarrow{OB}$-$\overrightarrow{OA}$=(3,4)
又$\overrightarrow{AC}$∥$\overrightarrow{OB}$,$\overrightarrow{BC}$⊥$\overrightarrow{AB}$,
∴5(x+3)=0,且3x+4(y-5)=0
解得x=-3,y=$\frac{29}{4}$.
∴向量$\overrightarrow{OC}$的坐标:(-3,$\frac{29}{4}$).

点评 本题考查的知识点是数量积判断两个平面向量的垂直关系,共线(平行)向量,平面向量的坐标运算,平面向量的基本定理,其中根据已知条件构造对应的方程组,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C的对边的边长分别为a,b,c,已知c=$\sqrt{3}$,C=$\frac{π}{3}$.
(1)求△ABC的周长l的最大值;
(2)若2sin2A+sin(2B+C)-sinC=0,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设$\left\{\begin{array}{l}{x=f′(t)}\\{y=tf′(t)-f(t)}\end{array}\right.$,f(t)三阶可导,且f″(t)≠0.求$\frac{{d}^{3}y}{d{x}^{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点P(-2,3),Q(3,0),M(1,a),若||PM|-|QM||最大,则实数a=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{a}$=(-2,4),$\overrightarrow{b}$=(4,-3),$\overrightarrow{c}$=($\frac{1}{2}$,3),则3$\overrightarrow{a}$-$\overrightarrow{b}$+2$\overrightarrow{c}$的坐标为(-9,21).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某工厂生产一批产品,固定成本为12000元,每件产品的可变成本为60元,销售价为每件180元.
(1)试建立总成本与产量之间的函数关系;
(2)试建立销售收人与产量之间的函数关系;
(3)试建立利润收人与产量之间的函数关系,并求产量至少为多少时才会保本.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,D是AB边的中点,试用$\overrightarrow{AC}$、$\overrightarrow{BC}$表示向量$\overrightarrow{CD}$,则$\overrightarrow{CD}$=-$\frac{1}{2}$$\overrightarrow{AC}$-$\frac{1}{2}$$\overrightarrow{BC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,直三棱柱ABC-A1B1C1中,D、E分别是AB、BB1的中点.
(Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ)设AA1=AC=CB=2,AB=2$\sqrt{2}$,求四棱锥C-A1ABE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数$f(x)=\sqrt{3}sinxcosx+{sin^2}x+sin({2x-\frac{π}{6}})$.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若$x∈({0,\frac{π}{2}})$,求函数f(x)的值域.

查看答案和解析>>

同步练习册答案