分析 (1)由函数f(x)=lg(10x+a)是定义域为R上的奇函数,可得f(0)=0,解得实数a的值;
(2)若h(x)≤xlog3x在x∈[3,8]上恒成立,则t≤log3x在x∈[3,8]上恒成立,结合log3x在x∈[3,8]上最小值为1,可得t的取值范围.
解答 解:(1)∵函数f(x)=lg(10x+a)是定义域为R上的奇函数,
∴f(0)=lg(100+a)=0,
即1+a=1,
解得:a=0
(2)由(1)得函数f(x)=lg(10x)=x,
若h(x)=tf(x)=tx≤xlog3x在x∈[3,8]上恒成立,
∴t≤log3x在x∈[3,8]上恒成立,
∴t≤1.
点评 本题考查的知识点是对数函数的图象和性质,函数恒成立问题,函数的最值,函数的奇偶性,难度中档.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com