精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xoy中,曲线C1的参数方程为 (θ为参数),以坐标原点O为极点,x轴的正半轴为极轴,与直角坐标系xoy取相同的单位长度建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ﹣4sinθ.
(1)化曲线C1 , C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)设曲线C2与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作斜率为1的直线,l交曲线C2于A,B两点,求线段AB的长.

【答案】
(1)解:曲线C1的参数方程为 ,消去参数可得: ,表示焦点在y轴上的椭圆方程.

曲线C2的极坐标方程为ρ=2cosθ﹣4sinθ,可得ρ2=2ρcosθ﹣4ρsinθ,

∴x2+y2=2x﹣4y,整理得(x﹣1)2+(y+2)2=5,表示以(1,﹣2)为圆心,半径r=5的圆.


(2)解:曲线C2与x轴的一个交点的坐标为P(m,0)(m>0),令y=0,解得x=2,

∴P(2,0),可得直线l:y=x﹣2.

将曲线C1的参数方程带入直线l可得: sinθ=2cosθ﹣2.

整理可得:cos( )= ,即θ=2kπ或 ,(k∈Z).

那么:A(2,0),B(﹣1,﹣3),

∴|AB|=


【解析】(1)根据sin2θ+cos2θ=1消去曲线C1的参数θ可得普通方程;根据ρcosθ=x,ρsinθ=y,ρ2=x2+y2 , 进行代换即得曲线C2的普通方程;(2)令曲线C2的y=0,求解P的坐标,可得过P的直线方程,参数方程的几何意义求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知AB=1,AC=2,∠A=60°,若点P满足 = ,且 =1,则实数λ的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2x+1)er+1+mx,若有且仅有两个整数使得f(x)≤0.则实数m的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|+|2x+5|,且f(x)≥m恒成立.
(Ⅰ)求m的取值范围;
(Ⅱ)当m取最大值时,解关于x的不等式:|x﹣3|﹣2x≤2m﹣8.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(2cosx,sinx), =(cosx,2 cosx),函数f(x)= ﹣1.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在锐角△ABC中,内角A、B、C的对边分别为a,b,c,tanB= ,对任意满足条件的A,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: =1(a>0,b>0)的左、右焦点分别为F1 , F2 , O为坐标原点,点P是双曲线在第一象限内的点,直线PO,PF2分别交双曲线C的左、右支于另一点M,N,若|PF1|=2|PF2|,且∠MF2N=120°,则双曲线的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)当a=1时,求函数f(x)的单调区间;
(2)若﹣1<x<1时,均有f(x)≤0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足an=2Sn+1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=(2n﹣1)an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案