精英家教网 > 高中数学 > 题目详情
已知双曲线,若过右焦点F且倾斜角为30°的直线与双曲线的右支有两个交点,则此双曲线离心率的取值范围是__________.

试题分析:易知:直线的斜率为,要满足直线方程与双曲线右支有两个交点,需,所以双曲线离心率的取值范围是
点评:要使此直线与双曲线的右支有两个交点,需满足此直线的斜率比过一三象限的渐近线的斜率大,分析出这一条是解题的关键。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=6,那么|AB|等于   

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线经过的定点的坐标是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线与曲线相切于点,则的值为 (    )
A.5B. 6 C. 4D. 9

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,一条经过点且方向向量为的直线交椭圆两点,交轴于点,且

(1)求直线的方程;
(2)求椭圆长轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)已知椭圆()过点,其左、右焦点分别为,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)
已知椭圆)过点(0,2),离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过定点(2,0)的直线与椭圆相交于两点,且为锐角(其中为坐标原点),求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,过抛物线y2="2px" (p0)的焦点F的直线交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3.则此抛物线的方程为(    )

A.y2=—x
B.y2=9x
C.y2=x
D. y2=3x

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线 y2 =" 4x" 的焦点作直线交抛物线于A(x1, y1)B(x2, y2)两点,如果=6,那么           

查看答案和解析>>

同步练习册答案