精英家教网 > 高中数学 > 题目详情

【题目】

如图,已知平面QBC与直线PA均垂直于所在平面,且PA=AB=AC

)求证:PA∥平面QBC

)若,求二面角Q-PB-A的余弦值.

【答案】(1)通过已知中的平面平面,那么结合平面,和平面,从而得到线线平行,利用线面平行的性质来证明.

(2)

【解析】

试题解:(I)证明:过点于点

平面平面平面

平面

平面

平面

平面

的中点,连结,则

平面

四边形是矩形

于点

中点,连结,取的中点,连结

为二面角的平面角

连结,则

即二面角的余弦值为

方法二:

I)同方法一

平面

,又

的中点,连结,则

平面

四边形是矩形

分别以轴建立空间直角坐标系

,则

设平面的法向量为

平面的法向量为

设二面角,则

二面角是钝角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线和曲线,以极点为坐标原点,极轴为轴非负半轴建立平面直角坐标系.

(1)求曲线和曲线的直角坐标方程;

(2)若点是曲线上一动点,过点作线段的垂线交曲线于点,求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代码

1

2

3

4

5

6

11

13

16

15

20

21

(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;

(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:

车型 报废年限

1年

2年

3年

4年

总计

10

30

40

20

100

15

40

35

10

100

经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?

参考数据:.

参考公式:相关系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日,小刘从各个渠道融资万元,在某大学投资一个咖啡店,日正式开业,已知开业第一年运营成本为万元,由于工人工资不断增加及设备维修等,以后每年成本增加万元,若每年的销售额为万元,用数列表示前年的纯收入.(注:纯收入年的总收入年的总支出投资额)

1)试求年平均利润最大时的年份(年份取正整数)并求出最大值.

2)若前年的收入达到最大值时,小刘计划用前年总收入的对咖啡店进行重新装修,请问:小刘最早从哪一年对咖啡店进行重新装修(年份取整数)?并求小刘计划装修的费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过抛物线C的焦点F作互相垂直的两条直线ABCD,与抛物线C分别相交于ABCD,点ACx轴上方.

1)若直线AB的倾斜角为,求的值;

2)设的面积之和为S,求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若不等式对任意的恒成立,求实数的取值范围;

2)记表示中的最小值,若函数内恰有一个零点,求实的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)记,试判断函数的极值点的情况;

(Ⅱ)若有且仅有两个整数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年暑期都会有大量中学生参加名校游学,夏令营等活动,某中学学生社团将其今年的社会实践主题定为“中学生暑期游学支出分析”,并在该市各个中学随机抽取了共名中学生进行问卷调查,根据问卷调查发现共名中学生参与了各类游学、夏令营等活动,从中统计得到中学生暑期游学支出(单位:百元)频率分布方图如图.

I)求实数的值;

(Ⅱ)在三组中利用分层抽样抽取人,并从抽取的人中随机选出人,对其消费情况进行进一步分析.

i)求每组恰好各被选出人的概率;

ii)设为选出的人中这一组的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若关于x的方程有四个不等实根,且恒成立,则实数的最小值为________.

查看答案和解析>>

同步练习册答案