精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱台中, 侧面与侧面是全等的梯形,若,且.

(Ⅰ)若 ,证明: ∥平面

(Ⅱ)若二面角,求平面与平面所成的锐二面角的余弦值.

【答案】()见解析() .

【解析】试题分析:() 连接,由比例可得,进而得线面平行;

(Ⅱ)过点的垂线,建立空间直角坐标系,不妨设,则求得平面的法向量为,设平面的法向量为,由求二面角余弦即可.

试题解析:

(Ⅰ)证明:连接,梯形 ,

易知:

,则

平面 平面

可得: ∥平面

(Ⅱ)侧面是梯形,

, ,

为二面角的平面角,

均为正三角形,在平面内,过点的垂线,如图建立空间直角坐标系,不妨设,则

,故点

设平面的法向量为,则有:

设平面的法向量为,则有:

故平面与平面所成的锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲乙两台机床同时生产一种零件,10天中,两台机床每天出的次品数分别是

0

1

0

2

2

0

3

1

2

4

2

3

1

1

0

2

1

1

0

1

由此判断性能较好的一台是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的一元二次方程x2﹣2ax+b2=0.
(1)若a是从0、1、2、3四个数中任取的一个数,b是从0、1、2三个数中任取的一个数,求上述方程有实根的概率.
(2)若a是从区间[0,3]内任取的一个数,b是从区间[0,2]内任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是(
①“若x2+y2≠0,则x,y不全为零”的否命题;
②“正多边形都相似”的逆命题;
③“若m>0,则x2+x﹣m=0有实根”的逆否命题;
④“若x﹣ 是有理数,则x是无理数”的逆否命题.
A.①②③④
B.①③④
C.②③④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名同学在五次考试中数学成绩统计用茎叶图如表示如图2所示,则甲的平均成绩比乙的平均成绩(填高、低、相等);甲成绩的方差比乙成绩的方差(填大、小)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的叙述,错误的个数为(
①若p∨q为真命题,则p∧q为真命题
②“x>5”是“x2﹣4x﹣5>0”的充分不必要条件
③命题p:x∈R,使得x2+x﹣1<0,则¬p:x∈R,使得x2+x﹣1≥0
④命题“若x2﹣3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2﹣3x+2≠0”
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O的方程为x2+y2=5.
(1)P是直线y= x﹣5上的动点,过P作圆O的两条切线PC、PD,切点为C、D,求证:直线CD过定点;
(2)若EF、GH为圆O的两条互相垂直的弦,垂足为M(1,1),求四边形EGFH面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】{an}满足a1=4,且an=4﹣ (n>1),记bn=
(1)求证:{bn}为等差数列.
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数:f(x)=asin2x+cos2x且f( )=
(1)求a的值和f(x)的最大值;
(2)求f(x)的单调减区间.

查看答案和解析>>

同步练习册答案