精英家教网 > 高中数学 > 题目详情
7.已知f(x)=loga$\frac{2+x}{2-x}$(a>0且a≠1)
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性;
(3)当 a>1时,求使f(x)>0成立的x的取值范围.

分析 (1)利用使对数有意义的条件得到关于x的不等式解之;
(2)判断f(-x)与f(x)的关系,得到函数的奇偶性;
(3)已知a>1,得到真数大于0,解分式不等式即可.

解答 解:(1)由$\frac{2+x}{2-x}>0$得到-2<x<2,所以f (x) 的定义域是(-2,2);
(2)因为f(-x)=$lo{g}_{a}\frac{2-x}{2+x}=-log\frac{2+x}{2-x}=-f(x)$,所以f(x)为奇函数.
(3)由于a>1,所以loga$\frac{2+x}{2-x}$>0?$\frac{2+x}{2-x}$>1?$\frac{2+x}{2-x}$-1>0?$\frac{2x}{2-x}>0$?x(x-2)<0?0<x<2.

点评 本题考查了函数定义域求法,奇偶性的判断以及不等式解法;熟练掌握对数函数的性质是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.平面直角坐标系xOy中,过椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F作直线$x+y-\sqrt{2}=0$交M于A,B两点,P为AB的中点,且OP的斜率为$\frac{1}{2}$.
(1)求M的方程;
(2)设直线x-my+1=0交椭圆M于C,D两点,判断点$G(-\frac{9}{4},0)$与以线段CD为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l的参数方程为:$\left\{\begin{array}{l}y=\frac{{\sqrt{3}}}{2}t\\ x=m+\frac{1}{2}t\end{array}\right.$(t为参数),曲线C的极坐标方程为:ρ2cos2θ=1.
(1)以极点为原点,极轴为x轴正半轴,建立直角坐标系,求曲线C的直角坐标方程;
(2)若求直线,被曲线C截得的弦长为$2\sqrt{10}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.求值:log225•log3$\frac{1}{16}$•log5$\frac{1}{9}$=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某工厂每日生产某种产品x(x≥1)吨,当日生产的产品当日销售完毕,产品价格随产品产量而变化,当1≤x≤20时,每日的销售额y(单位:万元)与当日的产量x满足y=alnx+b,当日产量超过20吨时,销售额只能保持日产量20吨时的状况.已知日产量为2吨时销售额为4.5万元,日产量为4吨时销售额为8万元.
(1)把每日销售额y表示为日产量x的函数;
(2)若每日的生产成本$c(x)=\frac{1}{2}x+1$(单位:万元),当日产量为多少吨时,每日的利润可以达到最大?并求出最大值.(注:计算时取ln2=0.7,ln5=1.6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<\frac{π}{2})$的最小值为-3,且f(x)图象相邻的最高点与最低点的横坐标之差为2π,又f(x)的图象经过点$(0,\frac{3}{2})$;
(1)求函数f(x)的解析式;
(2)若方程f(x)-k=0在$x∈[0,\frac{11π}{3}]$有且仅有两个零点x1,x2,求k的取值范围,并求出x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如果三点A(2,1),B(-2,a),C(6,8)在同一直线上,在a=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=$\left\{\begin{array}{l}{{a}^{x}-a,x>1}\\{{x}^{2}+\frac{1}{2}ax-2,x≤1}\end{array}\right.$是(-$\frac{3}{8}$,+∞)上的增函数,那么a的取值范围是(  )
A.($\frac{3}{2}$,2)B.(1,2]C.[$\frac{3}{2}$,2]D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|x2-2x-3|-a满足下列条件,求a的取值范围.
(1)函数有两个零点;
(2)函数有四个零点.

查看答案和解析>>

同步练习册答案