【题目】已知函数;
(1)讨论的极值点的个数;
(2)若,且恒成立,求的最大值.
参考数据:
1.6 | 1.7 | 1.8 | |
4.953 | 5.474 | 6.050 | |
0.470 | 0.531 | 0.588 |
【答案】(1)见解析;(2)10.
【解析】
(1)求导数得到,然后分和两种情况讨论函数的极值点的个数.(2)由(1)知有极大值,且满足①,
且,要使恒成立,只需②,代换后可得只需,又,所以只需.然后通过分析可得函数的零点,且.又由②可得,且当时,,不等式显然恒成立;当时,,,然后令,,可得,于是可得的最大值.
(1)根据题意可得,,
①当时,,函数单调递减,无极值点;
②当时,令,得,
又在上是增函数,且当时,,
所以在上存在一解,不妨设为,
所以函数在上单调递增,在上单调递减.
所以函数有一个极大值点,无极小值点;
总上可得:当时,无极值点;
当时,函数有一个极大值点,无极小值点.
(2)因为,由(1)知有极大值,且满足①,
且,
要使恒成立,只需②,
由①可得,代入② 得,即,
因为,所以,
因为,,且在是增函数,
设为的零点,则,可知,
由②可得,
当时,,不等式显然恒成立;
当时,,,
令,,,
所以上是减函数,且,,
所以,
所以,
又,
所以的最大值为.
科目:高中数学 来源: 题型:
【题目】已知二次函数满足,且方程有两个相等的实数根
(1)求函数的解析式;
(2)若是上的奇函数,且时,,求的解析式;
(3)若不等式对一切实数,恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划在报刊与网络媒体上共投放30万元的广告费,根据计划,报刊与网络媒体至少要投资4万元.根据市场前期调研可知,在报刊上投放广告的收益与广告费满足,在网络媒体上投放广告的收益与广告费满足,设在报刊上投放的广告费为(单位:万元),总收益为(单位:万元).
(1)当在报刊上投放的广告费是18万元时,求此时公司总收益;
(2)试问如何安排报刊、网络媒体的广告投资费,才能使总收益最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合,,集合,且集合满足,.
(1)求实数的值;
(2)对集合,其中,定义由中的元素构成两个相应的集合:,,其中是有序数对,集合和中的元素个数分别为和,若对任意的,总有,则称集合具有性质.
①请检验集合与是否具有性质,并对其中具有性质的集合,写出相应的集合和;
②试判断和的大小关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点,焦点在轴上的椭圆,离心率,且椭圆过点.
(1)求椭圆的方程;
(2)设椭圆左、右焦点分别为,过的直线与椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的定义域为().
(1)当时,求函数的值域;
(2)若函数在定义域上是减函数,求的取值范围;
(3)求函数在定义域上的最大值及最小值,并求出函数取最值时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知倾斜角为的直线经过抛物线:的焦点,与抛物线相交于、两点,且.
(Ⅰ)求抛物线的方程;
(Ⅱ)过点的两条直线、分别交抛物线于点、和、,线段和的中点分别为、.如果直线与的倾斜角互余,求证:直线经过一定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把函数的图象沿着轴向左平移个单位,纵坐标伸长到原来的倍(横坐标不变)后得到函数的图象,对于函数有以下四个判断:
(1)该函数的解析式为;
(2)该函数图象关于点对称;
(3)该函数在上是增函数;
(4)若函数在上的最小值为,则.
其中正确的判断有( )
A.个B.个C.个D.个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com