精英家教网 > 高中数学 > 题目详情
已知函数是定义在上的奇函数,若对于任意给定的不等实数,不等式恒成立,则不等式的解集为          .

试题分析:先利用不等式(x1-x2)[f(x1)-f(x2)]<0恒成立得到函数f(x)是定义在R上的减函数;再利用函数f(x+1)是定义在R上的奇函数得到函数f(x)过(1,0)点,二者相结合即可求出不等式f(1-x)<0的解集解:由不等式(x1-x2)[f(x1)-f(x2)]<0恒成立得,函数f(x)是定义在R上的减函数 ①.又因为函数f(x+1)是定义在R上的奇函数,所以有函数f(x+1)过点(0,0);故函数f(x)过点(1,0)②.①②相结合得:x>1时,f(x)<0.故不等式f(1-x)<0转化为1-x>1⇒x<0.故答案为
点评:本题主要考查函数奇偶性和单调性的综合应用问题.关键点有两处:①判断出函数f(x)的单调性;②利用奇函数的性质得到函数f(x)过(1,0)点。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知,则=(   )
A.B.   C.0  D.无法求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

随着机构改革工作的深入进行,各单位要减员增效。有一家公司现有职员人,(,且为偶数),每人每年可创利万元。据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年可多创利万元,但公司需支付下岗职员每人每年万元的生活费,并且该公司正常运转所需人数不得小于现有员工的,为获得最大的经济效益,该公司应裁员多少人?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)当时,解不等式
(2)若,解关于的不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为全集,,则(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数的图象恰好通过个整点,则称函数阶整点函数。有下列函数:
;  ②   ③     ④
其中是一阶整点函数的是(       )
A.①②③④B.①③④C.①④D.④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数
(1)若时,在其定义域内单调递增,求的取值范围;
(2)设函数的图象与函数的图象交于两点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求的横坐标,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)="2" sin(0≤x≤5),点A、B分别是函数y=f(x)图像上的最高点和最低点.
(1)求点A、B的坐标以及·的值;
(2)没点A、B分别在角的终边上,求tan()的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数为常数)。
(Ⅰ)函数的图象在点()处的切线与函数的图象相切,求实数的值;
(Ⅱ)设,若函数在定义域上存在单调减区间,求实数的取值范围;
(Ⅲ)若,对于区间[1,2]内的任意两个不相等的实数,都有
成立,求的取值范围。

查看答案和解析>>

同步练习册答案