分析 (1)把点(6,3)代入得,2=loga(6-a),2=logaa2,解方程即可;
(2)代入,整理可得∴[2x+3]2≥2x+2+3+m,利用换元法得出t2+2t+6≥m恒成立,只需求出左式的最小值即可.
解答 解:(1)把点(6,3)代入得,
3=loga(6-a)+1,
∴logaa2=loga(6-a)
∴a2+a-6=0,
∴a=2
(2)h(x)=2x+1,F(x)=[2x+3]2,G(x)=2x+2+5,
∴[2x+3]2≥2x+2+3+m,
∴令t=2x,t>0,
∴t2+2t+6≥m恒成立,
∵t>0,得t2+2t+6≥6,
∴m≤6.
点评 考查了对数方程的解法和恒成立问题的转换,属于常规题型,应熟练掌握.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{5}{3}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2477 | B. | 2427 | C. | 2427.5 | D. | 2477.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?x0∉R,使得$x_0^2>4$ | B. | ?x0∉R,使得$x_0^2≤4$ | ||
C. | ?x∈R,x2>4 | D. | ?x∈R,x2≤4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 在正三棱锥中,斜高大于侧棱 | |
B. | 有一条侧棱垂直于底面的棱柱是直棱柱 | |
C. | 底面是正方形的棱锥是正四棱锥 | |
D. | 有一个面是多边形,其余各面均为三角形的几何体是棱锥 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com