精英家教网 > 高中数学 > 题目详情
如图,已知直线l:x+2y-4=0与两坐标轴分别交于A、B两点,矩形ODCE的一个顶点C在直线l上,那么矩形面积的最大值为____________,此时C点坐标为____________.

思路解析:可设出C点坐标,写出矩形面积的表达式,根据表达式求出矩形面积最大值.

设C(x,y),则x>0,y>0且x+2y-4=0,即x=4-2y,矩形面积为S=xy=(4-2y)y=2(2-y)y≤2×[2=2,当且仅当2-y=y,即y=1时取等号,此时x=4-2=2,即矩形面积的最大值为2,对应点C坐标为(2,1).

答案:2  (2,1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).
(1)若动点M满足
AB
BM
+
2
|
AM
|
=0,求动点M的轨迹Q;
(2) F1,F2是轨迹Q的左、右焦点,过F1作直线l(不与x轴重合),l与轨迹Q相交于C,D,并与圆x2+y2=3相交于E,F.当
F2E
F2F
,且λ∈[
2
3
,1]时,求△F2CD的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知直线l与抛物线y=
1
4
x2
相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).
(1)若动点M满足
AB
BM
+
2
|
AM
|=0
,求动点M的轨迹C的方程;
(2)若过点B的直线l'(斜率不等于零)与(1)中的轨迹C交于不同
的两点E、F(E在B、F之间),且
BE
BF
,试求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设a>0,如图,已知直线l:y=ax及曲线C:y=x2,C上的点Q1的横坐标为a1(0<a1<a).从C上的点Qn(n≥1)作直线平行于x轴,交直线l于点Pn+1,再从点Pn+1作直线平行于y轴,交曲线C于点Qn+1.Qn(n=1,2,3,…)的横坐标构成数列{an}.
(Ⅰ)试求an+1与an的关系,并求{an}的通项公式;
(Ⅱ)当a=1,a1
1
2
时,证明
n
k=1
(ak-ak+1)ak+2
1
32

(Ⅲ)当a=1时,证明
n
k-1
(ak-ak+1)ak+2
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州三模)如图,已知直线l:y=4x及曲线C:y=x2,C上的点Q1的横坐标为a1(0<a1<4).从曲线C上的点Qn(n≥1)作直线平行于x轴,交直线l于点Pn+1,再从点Pn+1作直线平行于y轴,交曲线C于点Qn+1.Qn(n=1,2,3,…)的横坐标构成数列{an}.
(1)试求an+1与an的关系; 
(2)若曲线C的平行于直线l的切线的切点恰好介于点Q1,Q2之间(不与Q1,Q2重合),求a3的取值范围;
(3)若a1=3,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乐山一模)如图,已知直线l过点A(0,4),交函数y=2x的图象于点C,交x轴于点B,若AC:CB=2:3,则点B的横坐标为
3.16
3.16
.(结果精确到0.01,参考数据lg2=0.3010,lg3=0.4771)

查看答案和解析>>

同步练习册答案