精英家教网 > 高中数学 > 题目详情

已知圆O:x2+y2=1和点A(2,1),过圆O外一点P(a,b)向圆O引切线PQ,切点为Q,且满足PQ=PA.若以P为圆心所作的圆P和圆O有公共点,则圆P的半径的最小值为________.

-1
分析:由题意可得:|PQ|2=|PO|2-1=a2+b2-1,又PQ=PA,可得2a+b-3=0.因为以P为圆心所作的圆P和圆O有公共点,所以圆P与圆O外切时,可使圆P的半径最小.又因为PO=1+圆P的半径,所以当圆P的半径最小即为PO最小,即点O到直线2a+b-3=0的距离最小,进而解决问题.
解答:由题意可得:过圆O外一点P(a,b)向圆O引切线PQ,切点为Q,
所以|PQ|2=|PO|2-1=a2+b2-1.
又因为|PA|2=(a-2)2+(b-1)2,并且满足PQ=PA,
所以整理可得2a+b-3=0.
因为以P为圆心所作的圆P和圆O有公共点,
所以两圆相切或相交,
即圆P与圆O外切时,可使圆P的半径最小.
又因为PO=1+圆P的半径,
所以当圆P的半径最小即为PO最小,
即点O到直线2a+b-3=0的距离最小,并且距离的最小值为
所以圆P的半径的最小值为-1.
故答案为:-1.
点评:解决此类问题的关键是熟练掌握直线与圆、圆与圆的位置关系,以及两点之间的距离公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为
2
2
的椭圆,其左焦点为F.若P是圆O上一点,连接PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知圆o:x2+y2=b2与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
有一个公共点A(0,1),F为椭圆的左焦点,直线AF被圆所截得的弦长为1.
(1)求椭圆方程.
(2)圆o与x轴的两个交点为C、D,B( x0,y0)是椭圆上异于点A的一个动点,在线段CD上是否存在点T(t,0),使|BT|=|AT|,若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=9,定点 A(6,0),直线l:3x-4y-25=0
(1)若P为圆O上动点,求线段PA的中点M的轨迹方程
(2)设E、F分别是圆O和直线l上任意一点,求线段EF的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知圆O:x2+y2=r2,点P(a,b)(ab≠0)是圆O内一点,过点P的圆O的最短弦所在的直线为l1,直线l2的方程为ax+by+r2=0,那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=1,点P在直线x=
3
上,O为坐标原点,若圆O上存在点Q,使∠OPQ=30°,则点P的纵坐标y0的取值范围是(  )

查看答案和解析>>

同步练习册答案