精英家教网 > 高中数学 > 题目详情
18.在平面几何里,“若CD是Rt△ABC的斜边AB上的高,则$\frac{1}{{C{D^2}}}=\frac{1}{{C{A^2}}}+\frac{1}{{C{B^2}}}$.”拓展到空间,研究三棱锥的高与侧棱间的关系,可得出的正确结论是:“若三棱锥A-BCD的三侧面ABC、ACD、ADB两两互相垂直,AO是三棱锥A-BCD的高,则$\frac{1}{{A{O^2}}}=\frac{1}{{A{B^2}}}+\frac{1}{{A{C^2}}}+\frac{1}{{A{D^2}}}$”.

分析 立体几何中的类比推理主要是基本元素之间的类比:平面?空间,点?点或直线,直线?直线或平面,平面图形?平面图形或立体图形,故本题由平面上的直角三角形中的边与高的关系式类比立体中两两垂直的棱的三棱锥中边与高的关系即可.

解答 解:若CD是Rt△ABC的斜边AB上的高,则$\frac{1}{{C{D^2}}}=\frac{1}{{C{A^2}}}+\frac{1}{{C{B^2}}}$,
∵AO是三棱锥A-BCD的高,三棱锥A-BCD的三侧面ABC、ACD、ADB两两互相垂直,
∴类比可得$\frac{1}{{A{O^2}}}=\frac{1}{{A{B^2}}}+\frac{1}{{A{C^2}}}+\frac{1}{{A{D^2}}}$.
故答案为:$\frac{1}{{A{O^2}}}=\frac{1}{{A{B^2}}}+\frac{1}{{A{C^2}}}+\frac{1}{{A{D^2}}}$.

点评 类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.其思维过程大致是:观察、比较 联想、类推猜测新的结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.若存在正实数x,使得不等式$\frac{lnx}{x+1}$≥ln$\frac{kx}{x+1}$成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,则f(2x)等于(  )
A.2f(x)B.2[f(x)+g(x)]C.2g(x)D.2f(x)•g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=log${\;}_{\frac{1}{2}}$(x2-2ax+3).
(1)若函数f(x)的定义域为R,求实数a的取值范围;
(2)若函数f(x)的值域为R,求实数a的取值范围;
(2)若函数f(x)在(-∞,1]上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F1,F2分别是双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点,O为坐标原点,P为双曲线右支上的一点,PF1与以F2为圆心,|OF2|为半径的圆相切于点Q,且Q恰好是PF1的中点,则双曲线C的离心率为(  )
A.$\frac{{\sqrt{3}+1}}{2}$B.$\sqrt{3}+1$C.$\frac{{\sqrt{6}}}{2}$D.$\sqrt{5}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.三角形三边长分别是6、8、10,那么它最短边上的高为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{2+|x-2|,}&{x≥0}\\{{x}^{2}}&{x<0}\end{array}\right.$,当函数g(x)=k-f(x)有三个零点时,实数k的取值范围是(  )
A.<k<2B.k≥2C.2<k≤4D.2≤k≤4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.幂函数f(x)=k•xα的图象过点$(\frac{1}{3},\frac{{\sqrt{3}}}{3})$,则k+α=(  )
A.$\frac{1}{3}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=logm(x2+4x+4a+1)(m>0,且m≠1)对于任意x∈[0,+∞)都有意义.
(1)求实数a的取值范围;
(2)在函数上是否存在不同的两点,使过这两点的直线平行于x轴?

查看答案和解析>>

同步练习册答案