如图,AB、CD均为圆O的直径,CE⊥圆O所在的平面,BF∥CE.求证:
(1)平面BCEF⊥平面ACE;
(2)直线DF∥平面ACE.
(1)见解析(2)见解析
【解析】证明:(1)因为CE⊥圆O所在的平面,BC圆O所在的平面,所以CE⊥BC.
因为AB为圆O的直径,点C在圆O上,所以AC⊥BC,
因为AC∩CE=C,AC,CE平面ACE,所以BC⊥平面ACE,
因为BC平面BCEF,所以平面BCEF⊥平面ACE.
(2)由(1)AC⊥BC,又因为CD为圆O的直径,所以BD⊥BC,
因为AC、BC、BD在同一平面内,所以AC∥BD,
因为BD平面ACE,AC平面ACE,所以BD∥平面ACE.
因为BF∥CE,同理可证BF∥平面ACE,
因为BD∩BF=B,BD、BF平面BDF,所以平面BDF∥平面ACE,
因为DF?平面BDF,所以DF∥平面ACE
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第六章第2课时练习卷(解析版) 题型:填空题
已知实数x,y满足若z=ax+y的最大值为3a+9,最小值为3a-3,则实数a的取值范围为__________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第6课时练习卷(解析版) 题型:解答题
如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.
求证:(1)AM∥平面BDE;
(2)AM⊥平面BDF.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第5课时练习卷(解析版) 题型:解答题
如图,底面边长为a,高为h的正三棱柱ABC-A1B1C1,其中D是AB的中点,E是BC的三等分点.求几何体BDEA1B1C1的体积.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第5课时练习卷(解析版) 题型:填空题
若长方体三个面的面积分别为,,,则此长方体的外接球的表面积是________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第4课时练习卷(解析版) 题型:解答题
如图①,在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中点.如图②,将△ABE沿AE折起,使二面角BAEC成直二面角,连结BC、BD,F是CD的中点,P是棱BC的中点.求证:
图①图②
(1)AE⊥BD;
(2)平面PEF⊥平面AECD.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第4课时练习卷(解析版) 题型:解答题
如图,三棱锥A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且=λ(0<λ<1).
(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(2)当λ为何值时,平面BEF⊥平面ACD..
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第3课时练习卷(解析版) 题型:解答题
在正方体ABCD-A1B1C1D1中,E、F分别是CD、A1D1中点.
(1)求证:AB1⊥BF;
(2)求证:AE⊥BF;
(3)棱CC1上是否存在点F,使BF⊥平面AEP,若存在,确定点P的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第1课时练习卷(解析版) 题型:填空题
设P表示一个点,a,b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是________.(填序号)
①P∈a,P∈αaα;
②a∩b=P,bβaβ;
③a∥b,aα,P∈b,P∈αbα;
④α∩β=b,P∈α,P∈βP∈b.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com