精英家教网 > 高中数学 > 题目详情
3.已知tanα=2,则$\frac{sin2α}{si{n}^{2}α+sinαcosα-cos2α-1}$=1.

分析 由sin2α=2sinαcosα,cos2α=2cos2α-1,把原式等价转化为$\frac{2sinαcosα}{si{n}^{2}α+sinαcosα-2co{s}^{2}α}$,再把分子分母同时除以cos2α,得到$\frac{2tanα}{ta{n}^{2}α+tanα-2}$,由此能求出结果.

解答 解:∵tanα=2,
∴$\frac{sin2α}{si{n}^{2}α+sinαcosα-cos2α-1}$
=$\frac{2sinαcosα}{si{n}^{2}α+sinαcosα-2co{s}^{2}α}$
=$\frac{2tanα}{ta{n}^{2}α+tanα-2}$
=$\frac{4}{4+2-2}$
=1.
故答案为:1.

点评 本题考查三角函数的化简求值,是中档题,解题时要注意二倍角公式、降阶公式、同角三角函数关系式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设数列{an}的首项为1,前n项和为Sn,且Sn+1=n2+an+1(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=an•2${\;}^{{a}_{n}}$,Tn是数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an},公差d>0,前n项和为Sn,且满足a2a3=45,a1+a4=14.
(1)求数列{an}的通项公式及前n项和Sn
(2)设${b_n}=\frac{S_n}{{n-\frac{1}{2}}}$,
①求证{bn}是等差数列.
②求数列$\left\{{\frac{1}{{{b_n}•{b_{n+1}}}}}\right\}$的前n项和Tn
③求$\lim_{n→∞}{T_n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a<0,(3x2+a)(2x+b)≥0在(a,b)上恒成立,则b-a的最大值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知全集U=R,A={x|x≥1},B={x|2ax-5>0},
(1)若a=1,求A∩(∁UB).
(2)若A⊆B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)在△ABC中,若a=1,b=$\sqrt{3}$,B=120°.解三角形.
(2)在△ABC中,若a=3$\sqrt{3}$,b=2,C=150°.求边c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给定函数①$y={x^{\frac{1}{2}}}$,②$y=x+\frac{1}{x}$,③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列各式的值:
(1)2$\sqrt{3}×\root{3}{{3\frac{3}{8}}}-\sqrt{12}$
(2)(log25+log4125)•$\frac{{{{log}_3}2}}{{{{log}_{\sqrt{3}}}5}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若x+x-1=3,那么x2-x-2的值为(  )
A.$±3\sqrt{5}$B.$-\sqrt{5}$C.$3\sqrt{5}$D.$\sqrt{13}$

查看答案和解析>>

同步练习册答案